Tecnologías de Información y Comunicación aplicadas a la educación básica

MONOGRAFÍA

Que para obtener el Título de:

Licenciado en Sistemas Computacionales Administrativos

Presenta:

Lorraine Carrillo Calderón

Asesor:

M.T.E. Guillermo L. Sánchez Hernández

Xalapa-Enríquez, Veracruz Septiembre de 2007
ÍNDICE
INTRODUCCIÓN .. 1

CAPITULO I
SITUACIÓN DE LA EDUCACIÓN BÁSICA EN MÉXICO
1.1 Concepto de educación. .. 4
 1.1.2 Importancia de la educación... 5
1.2 ¿Qué es la educación básica? .. 10
1.3 Políticas educativas del Estado Mexicano. ... 12
 1.3.1 Una escuela para unir a los mexicanos. 1940-1958. 13
 1.3.2 El Plan de once años. 1958-1968... 14
 1.3.3 Enseñar haciendo: aprender produciendo. 1968-1982................ 15
1.4 Tamaño y composición del sistema educativo nacional; el problema de la
 Educación Básica... 19
 1.4.1 Contexto sociodemográfico. ... 19
 1.4.2 Influencia del contexto sociodemográfico sobre los tipos de servicios
educativos.. 22
1.5 Estadísticas del Sistema Educativo Mexicano. Periodo 2004-2005........ 26
 1.5.1 Esquema general del sistema educativo nacional............................ 26
 1.5.2 Estadísticas generales por nivel y tipo de sostenimiento de la
 educación básica... 27
 1.5.2.1 Estadísticas en la educación preescolar: por servicio y por
 sostenimiento.. 29
 1.5.2.2 Estadísticas en la educación primaria: por servicio y por
 sostenimiento.. 31
 1.5.2.3 Estadísticas en la educación secundaria: por servicio y por
 sostenimiento.. 32
1.6 Tipos de recursos tecnológicos en escuelas de educación básica
 en México... 34
1.6.1 Cifras totales de tipo de equipamiento tecnológico de escuelas primarias por estados.. 34

1.6.1.1 Tipo de equipamiento tecnológico de escuelas primarias por estado. Sector público.. 36

1.6.1.2 Tipo de equipamiento tecnológico de escuelas primarias por estado. Sector privado. .. 38

1.6.2 Cifras totales de tipo de equipamiento tecnológico de escuelas secundarias por estados.. 40

1.6.2.1 Tipo de equipamiento tecnológico de escuelas secundarias por estado. Sector público. .. 41

1.6.2.2 Tipo de equipamiento tecnológico de escuelas secundarias por estado. Sector privado. .. 43

CAPITULO II
LAS NTIC Y LA EDUCACIÓN

2.1 Revolución científico-técnica... 45

2.2 La tecnología y su evolución.. 50

2.3 Breve cronología de la tecnología moderna.. 52

2.4 Las Nuevas Tecnologías de Información y Comunicación: conceptos. 54

2.4.1 Definición de tecnología. ... 55

2.4.2 Definición de información.. 55

2.4.3 Definición de comunicación... 56

2.4.4 ¿TIC o NTIC?. .. 57

2.4.4.1 Conceptos de NTIC... 59

2.4.4.2 Conceptos de TIC. ... 59

2.5 La evolución de las Tecnologías de la Información y la Comunicación. 61

2.6 Características de las Nuevas Tecnologías de Información y Comunicación... 65

2.7 Impacto de las NTIC. ... 67

2.7.1 Impacto de las NTIC en la sociedad.. 67

2.7.2 Impacto de las NTIC en la educación... 69

2.8 Breve cronología de la introducción de las TIC en la educación básica. 71
2.9 Ventajas y Desventajas de las NTIC: repercusiones en la educación. 73
2.10 Conceptos de Tecnología Educativa. .. 87
 2.10.1 Origen de la Tecnología Educativa. ... 89
2.11 Comunicación y Educación. ... 101
 2.11.1 El audiovisual educativo en México. 102
 2.11.2 La radio y la televisión como medios de comunicación educativos. ... 105
 2.11.3 Internet y computadoras en la educación. 113
2.12 Modelos educativos y modelos comunicacionales. 122
 2.12.1 El modelo tradicional. .. 122
 2.12.2 El modelo de la tecnología educativa. 124
 2.12.3 El modelo problematizador o cogestionario. 128
2.13 La educación antes de las NTIC. .. 130
2.14 Nuevas Tecnologías frente a la educación. 136
2.15 Mitos y realidades en la Tecnología Educativa. 138
2.16 Factores que inciden en la incorporación de las TIC en la enseñanza. .. 143
2.17 Software Educativo. ... 146
 2.17.1 Software abierto, cerrado e híbrido. 146
 2.17.2 Otras clasificaciones de software educativo. 149

CAPÍTULO III
APLICACIONES DE LAS NTIC A LA EDUCACIÓN BÁSICA EN MÉXICO
3.1 Educación y Nuevas Tecnologías. .. 153
 3.1.1 Telesecundaria ... 155
 3.1.2 COEEBA ... 155
 3.1.3 Edusat ... 155
 3.1.4 Red escolar ... 156
 3.1.5 Sepiensa ... 156
 3.1.6 Educación para el Siglo XXI – E21 156
 3.1.7 Red Satelital de Televisión Educativa - EDUSAT 157
3.1.8 DGTVE ... 157
3.1.9 Enciclomedia .. 157

3.2 ¿Qué es Enciclomedia? ... 158

3.3 Otros proyectos educativos con NTIC................................. 166
 3.3.1 EMAT: Enseñanza de las Matemáticas con Tecnología........ 166
 3.3.1.1 Infraestructura. .. 171
 3.3.2 ECIT: Enseñanza de las ciencias con tecnología.................. 172
 3.3.2.1 Infraestructura. .. 174
 3.3.3 EFIT: Enseñanza de la Física con Tecnología..................... 174
 3.3.3.1 Infraestructura. .. 176
 3.3.4 ECAMM: Enseñanza de las ciencias con modelos matemáticos... 177
 3.3.4.1 Infraestructura. .. 178

3.4 Entrevistas realizadas a los coordinadores de proyectos educativos en México 179
 3.4.1 Caliman: la calculadora de imágenes. 179
 3.4.2 Enciclomedia. ... 182
 3.4.3 Sofia. ... 187

3.5 Portales educativos en Internet 197

CONCLUSIONES .. 199

BIBLIOGRAFIA .. 202
ÍNDICE DE TABLAS

TABLA 1. LOCALIDADES POR NÚMERO DE HABITANTES. AÑO 2000 -------------------- 19

TABLA 2. ESCUELAS PRIMARIAS POR TIPO DE SERVICIO---------------------------- 24

TABLA 3. MATRÍCULA DE PRIMARIA POR TIPO DE SERVICIO ----------------------- 24

TABLA 4. SERVICIOS EDUCATIVOS ESCOLARIZADOS ------------------------------- 27

TABLA 5. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS TOTALES DE PRIMARIAS -- --- ---- 35

TABLA 6. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PÚBLICO, PRIMARIAS--------------------------------- -- 36

TABLA 7. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PRIVADO, PRIMARIAS --- 38

TABLA 8. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS TOTALES DE SECUNDARIAS--- --- - 40

TABLA 9. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PÚBLICO, SECUNDARIAS---------------------------------- 42

TABLA 10. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PRIVADO, SECUNDARIAS ---------------------------------- 44
ÍNDICE DE GRÁFICAS

GRÁFICA 1. CONCENTRACIÓN DE LOCALIDADES RURALES CON MENOS DE 250 HABITANTES EN ENTIDADES FEDERATIVAS -- 20

GRÁFICA 2. CONCENTRACIÓN DE ESCUELAS DE EDUCACIÓN BÁSICA EN LAS ENTIDADES FEDERATIVAS -- 22

GRÁFICA 3. ESTADÍSTICAS GENERALES POR NIVEL Y POR SOSTENIMIENTO DE LA EDUCACIÓN BÁSICA EN MÉXICO --- 29

GRÁFICA 4. ESTADÍSTICAS POR SERVICIO Y POR SOSTENIMIENTO DE LA EDUCACIÓN PREESCOLAR EN MÉXICO --- 30

GRÁFICA 5. ESTADÍSTICAS POR SERVICIO Y POR SOSTENIMIENTO DE LA EDUCACIÓN PRIMARIA EN MÉXICO --- 32

GRÁFICA 6. ESTADÍSTICAS POR SERVICIO Y POR SOSTENIMIENTO DE LA EDUCACIÓN SECUNDARIA EN MÉXICO --- 33
INTRODUCCIÓN
INTRODUCCIÓN

La presente monografía sobre Las Tecnologías de Información y Comunicación aplicadas a la Educación Básica, tiene como finalidad presentar información concerniente a la educación básica en México y su respuesta ante la convergencia tecnológica que vivimos. Desde luego, el propósito es mostrar cuáles son los avances que el ámbito educativo ha logrado desde que las reformas educativas impulsan y proponen la introducción y uso de nuevas tecnologías como apoyo en el proceso de enseñanza aprendizaje.

Estamos conscientes que, viviendo en un mundo inmerso en tecnologías, es increíble que alguna actividad humana no haga uso de éstas. La educación en esencia es el alma de la sociedad; pues como sabemos; el conocimiento en el individuo es sinónimo de progreso, de ser visionario, de poseer aptitudes y actitudes que lo hagan hábil para enfrentar el mundo y sus exigencias.

Sin embargo, aunque vivimos a pasos agigantados, desafortunadamente la educación no va a éste ritmo. De acuerdo a factores como el económico, el demográfico y el cultural; la educación simplemente no se imparte por igual. Somos espectadores de las carencias que aún el sistema educativo mexicano presenta. En el primer capítulo de éste trabajo, se presenta de manera general cuál es la situación de la educación básica en México. Es importante que para comprender este aspecto y qué acciones hacen falta llevar a cabo para una mejora en el ámbito educativo, sobre todo en el nivel básico, se debe ser consciente de la importancia que la educación representa en nuestra vida; es decir, tener una razón clara del porqué y para qué es necesario educar a la sociedad. Es evidente, la prisa y la necesidad de incorporar a los procesos de enseñanza-aprendizaje el uso de nuevas tecnologías; sin embargo, tal y como se puede observar en este capítulo, el sistema educativo nacional mexicano, aún
presenta rezagos. Se presentan comparaciones del tipo de equipamiento tecnológico con que cuentan las escuelas de educación básica en los estados del país, y se demuestra que tan solo, un recurso tan necesario y común que hoy en día en la sociedad existe; como lo es el Internet, estadísticamente, existe en muy pocas escuelas, y paradójicamente, estamos en la era del Internet.

En el capítulo II se hace un análisis de las Tecnologías, en especial a aquellas referidas a la Información y la Comunicación. Las llamadas Nuevas Tecnologías de Información y Comunicación en su desarrollo, inesperadamente, han impactado en gran medida todos los ámbitos de la sociedad, y el educativo, por supuesto, no es la excepción. La convergencia de NTIC ha acelerado su inclusión en las actividades humanas; por lo que la nueva sociedad del conocimiento exige como producto educativo a individuos con capacidades, habilidades y conocimientos aptos para sobrevivir en el mundo en que se desenvuelven.

La respuesta que la educación expone ante esta situación es el uso de las NTIC como apoyo didáctico, o dicho de otra manera; el uso de tecnología educativa. Esta, como parte de la tecnología ha sufrido modificaciones y trata en consecuencia, estar a la vanguardia de los nuevos inventos tecnológicos, con el fin de que el proceso de enseñanza-aprendizaje sea de mayor calidad y conseguir que el rendimiento escolar de los alumnos sea óptimo. Como parte de este capítulo, se aborda, desde el punto de vista de la sociedad y el educativo; el impacto que ha generado el uso de las NTIC; así como los mitos y realidades que giran en torno al uso de la tecnología educativa, especificando en primera instancia, a qué se le denomina tecnología educativa. Finalmente, se muestran algunas clasificaciones del software, herramienta que orientada a la educación; representa un apoyo invaluable tanto para el docente como para el estudiante.

En el último capítulo, después de haber conocido qué es la tecnología educativa, sus impactos tanto en la sociedad como en la educación, así como las ventajas y desventajas que representa su introducción en nuestra cotidianidad; se finaliza mencionando algunos proyectos que el gobierno mexicano impulsa como
respuesta al uso de NTIC en la educación. Algunos de estos proyectos, aún se encuentran en desarrollo, sin embargo, los que ya están en etapa de implementación, como es el caso de ENCICLOMEDIA y EMAT, tienen como finalidad que por medio de una educación apoyada en NTIC, el aprendizaje del alumno mejore y se consideren a las NT como herramientas cotidianas invaluables para el proceso educativo, explotando y aprovechando los recursos tecnológicos que se tengan al alcance, por lo que finalizo con una lista de software educativo que puede ser consultado desde la World Wide Web, y que sin ningún costo; son de utilidad para la adquisición de conocimientos
CAPÍTULO I
SITUACIÓN DE LA EDUCACIÓN BÁSICA EN MÉXICO.
1.1 Concepto de educación.

“Etimológicamente, la palabra educación proviene fonética y morfológicamente de educare, cuyo significado es conducir, guiar, orientar y semánticamente viene de educere que quiere decir hacer salir, externar, dar a luz. De acuerdo a esto, podemos distinguir dos modelos conceptuales básicos: uno es un modelo directivo o de intervención (que se ajusta a la versión semántica de educere) y el otro es el modelo de extracción o desarrollo (referido a la versión de educare). Por lo tanto, podemos conceptualizar a la educación como un concepto que incluye ambas instancias y significa por lo tanto dirección (intervención) y desarrollo (perfeccionamiento)”. (Diccionario de las Ciencias de la Educación, 1997).

De hecho, la educación es un proceso de inculcación-asimilación de aspectos culturales, morales y conductuales que aseguran la supervivencia tanto individual como grupal o colectiva, convirtiéndose así en un proceso necesario y legítimo para la supervivencia humana, ya que el hombre se ve obligado a aprender las respuestas para vivir, lo que al mismo tiempo le hace ser de cierto modo y modifica y crea al mismo tiempo la cultura.
1.1.2 Importancia de la educación.

Definir la palabra educación no es tan sencillo como debiera ser, pues la realización de esta actividad es un eslabón más para el cumplimiento de muchas otras. Basta con que pensemos en todo aquello que nos viene a la mente cuando hablamos de educación; seguramente entendemos que se trata de enseñanza, sabiduría, aprendizaje, alfabetizar, civilidad, urbanidad, buenos modales, etc. En otras palabras y metafóricamente, la educación es sinónimo de progreso, puesto que es la base para que nos desarrollemos en cualquier ámbito profesional, social, sentimental, personal, etc. y todo para tener una mejor calidad en nuestra forma de vivir. Desde que el hombre apareció sobre la faz de la tierra, la necesidad de educar a sus semejantes o de transmitir el conocimiento que la experiencia le daba existió siempre, y es que gracias, en gran parte a la transmisión del conocimiento, hemos sido testigos de la preservación y evolución de nuestra especie. Pongamos un ejemplo: en la década de los 20’s del siglo pasado Alexander Fleming descubrió la penicilina; si sus investigaciones y conocimientos no hubieran sido compartidos, seguramente habrían pasado décadas en que alguien hubiese llegado al mismo descubrimiento, sin embargo también se habrían registrado muertes masivas por no poder contrarrestar las infecciones por las nuevas enfermedades que se avecinaban. Por lo tanto, la transmisión de los saberes y el compartir los mismos trae como consecuencia la educación para beneficio colectivo, es decir, toda educación, se basa en el envío-recepción de conocimiento, o lo que es lo mismo; procesar la información recibida. Un término ligado al concepto educación es conocimiento. Aquí vale la pena definirlo:

El Diccionario de Ciencias de la Educación (1997) lo define así:

“En el plano pedagógico, se entiende por conocimiento tanto el saber como el conjunto de los saberes que constituyen el currículum de cada una de las ciencias. Desde el punto de vista de la Psicología, el conocimiento se concibe como un proceso, que recibe el nombre de cognición o proceso cognitivo, que es todo aquel que transforma el material sensible que se recibe del entorno, codificándolo,
almacenándolo y recuperándolo en posteriores comportamientos adaptativos. Las principales formas de actividad en que se realiza el conocimiento son la percepción, la imaginación, la memoria y el pensamiento.”

Uno de los principales procesos humanos que distinguen al hombre, es precisamente la capacidad de procesar la información que recibe, orientando así al sujeto hacia un determinado tipo de conducta. El procesamiento de la información parte de la idea de que el ser humano es un sistema activo que selecciona, identifica e interpreta la información estimular presente en el medio, la distribuye en categorías para que finalmente tome una decisión que a su vez, le vuelve a poner en contacto con el mundo exterior.

Esto quiere decir, que el ser humano, al estar en contacto con el medio exterior, es obvio que será vulnerable a recibir un sinfín de información que le permitirá acrecentar su sabiduría o conocimiento y cambiar su manera de pensar, sin embargo, esa información proviene de entre otros medios, de la sabiduría de otros individuos. La información nos proporciona los conocimientos necesarios para interactuar con la sociedad y poder obtener una capacitación profesional, fin que persigue el sistema educativo. Sin embargo no solo basta con recibir esa información, es necesaria también la labor de un formador o educador que es quien orientará la adquisición del conocimiento, aunado a que el individuo también deberá colaborar al tener la capacidad de autoformarse con los diferentes tipos de educación que reciba; vial, cívica, sexual, sentimental, etc. Y con la adquisición de habilidades y procedimientos de actuación que le permitirán el desarrollo y perfeccionamiento de ciertas facultades humanas. La educación es el camino hacia el crecimiento en todos los sentidos, tanto como individuo o como nación.

Según Durkheim, para que se dé la educación, “… es necesario que exista una generación de adultos y una generación de jóvenes y la acción ejercida de los primeros sobre los segundos”. La educación verdadera para Paulo Freire es “praxis, reflexión y acción del hombre sobre el mundo para transformarlo”. Savater dice que “ese proceso de enseñanza nunca es una mera transmisión de
conocimientos objetivos o de destrezas prácticas, sino que se acompaña de un ideal de vida y de un proyecto de sociedad haciéndose notar la importancia del hombre como individuo y como parte de la sociedad". (Manuel Bernales, 2007).

Por lo tanto, se educa (entre tantos otros fines) para que el individuo tenga una herramienta sólida ante la sociedad y pueda desarrollarse en el ámbito profesional para que en un futuro reciba un salario por un trabajo calificado, lo cual representará un nivel de ingreso que irá en progreso de acuerdo a sus deseos de superación; disminuyendo las diferencias entre las clases sociales. La educación representa para quienes la reciben, la capacidad de analizar situaciones diversas, verlas desde distintas perspectivas y de acuerdo a la situación, poder discernir y tomar un decisión adecuada a la hora de elegir, le permite al sujeto tener un criterio amplio que le ayude a elegir entre acciones correctas e incorrectas, y ser capaz de tomar decisiones que beneficien ya no a solo él como individuo, sino también a la sociedad en la que se desarrolla. Hay que educar para mejorar la forma de relacionarnos, para generar capacidades de comunicación, para que podamos conocernos mejor y para saber qué queremos y cómo lograrlo.

El siguiente extracto tomado del artículo 2° perteneciente al Capítulo I de La Ley General de Educación (2006), nos dice lo que es la educación y su importancia:

Todo individuo tiene derecho a recibir educación y, por lo tanto, todos los habitantes del país tienen las mismas oportunidades de acceso al sistema educativo nacional, con sólo satisfacer los requisitos que establezcan las disposiciones generales aplicables.

La educación es medio fundamental para adquirir, transmitir y acrecentar la cultura; es proceso permanente que contribuye al desarrollo del individuo y a la transformación de la sociedad, y es factor determinante para la adquisición de conocimientos y para formar al hombre de manera que tenga sentido de solidaridad social.
En el proceso educativo deberá asegurarse la participación activa del educando, estimulando su iniciativa y su sentido de responsabilidad social, para alcanzar los fines a que se refiere el artículo 7°; los cuales son:

I.- Contribuir al desarrollo integral del individuo, para que ejerza plenamente sus capacidades humanas;

II.- Favorecer el desarrollo de facultades para adquirir conocimientos, así como la capacidad de observación, análisis y reflexión críticos;

III.- Fortalecer la conciencia de la nacionalidad y de la soberanía, el aprecio por la historia, los símbolos patrios y las instituciones nacionales, así como la valoración de las tradiciones y particularidades culturales de las diversas regiones del país;

IV.- Promover mediante la enseñanza el conocimiento de la pluralidad lingüística de la Nación y el respeto a los derechos lingüísticos de los pueblos indígenas. Los hablantes de lenguas indígenas, tendrán acceso a la educación obligatoria en su propia lengua y español.

V.- Infundir el conocimiento y la práctica de la democracia como la forma de gobierno y convivencia que permite a todos participar en la toma de decisiones al mejoramiento de la sociedad;

VI.- Promover el valor de la justicia, de la observancia de la Ley y de la igualdad de los individuos ante ésta, así como propiciar el conocimiento de los Derechos Humanos y el respeto a los mismos:

VII.- Fomentar actitudes que estimulen la investigación y la innovación científicas y tecnológicas:

VIII.- Impulsar la creación artística y propiciar la adquisición, el enriquecimiento y la difusión de los bienes y valores de la cultura universal, en especial de aquéllos que constituyen el patrimonio cultural de la Nación;

IX.- Estimular la educación física y la práctica del deporte;
X.- Desarrollar actitudes solidarias en los individuos, para crear conciencia sobre la preservación de la salud, la planeación familiar y la paternidad responsable, sin menoscabo de la libertad y del respeto absoluto a la dignidad humana, así como propiciar el rechazo a los vicios;

XI.- Inculcar los conceptos y principios fundamentales de la ciencia ambiental, el desarrollo sustentable así como de la valoración de la protección y conservación del medio ambiente como elementos esenciales para el desenvolvimiento armónico e integral del individuo y la sociedad.

XII.- Fomentar actitudes solidarias y positivas hacia el trabajo, el ahorro y el bienestar general.

XIII.- Fomentar los valores y principios del cooperativismo.

Finalmente, de acuerdo a nuestra Constitución Política de los Estados Unidos Mexicanos, en su Capítulo I de las Garantías Individuales, artículo 3°; todo individuo tiene derecho a la educación. El estado impartirá la educación preescolar, primaria y secundaria, conformando así la educación básica, la cual deberá ser laica, gratuita y obligatoria, entre otros criterios que deberá cumplir la educación básica.

Conviene en consecuencia, definir qué es la educación básica, no sin antes mencionar que, pese a que la educación básica, tal y como ya se mencionó, está compuesta por el nivel preescolar, el de primaria y el de secundaria, el Sistema Educativo Mexicano señala que con carácter de obligatorio se reconoce a la educación primaria y secundaria.
1.2 ¿Qué es la educación básica?

La educación básica puede definirse como aquella que “… proporciona el contenido mínimo fundamental de conocimientos, valores, actitudes y de saber hacer, de los que nadie debe carecer para su propia autorrealización, en tanto que individuo, y para integrarse en la sociedad, a la que pertenece.” (Diccionario de las Ciencias de la Educación, 1997).

La educación básica está dedicada a la educación infantil y de los adolescentes (sujetos de 3 o 4 a 15 o 16 años) y es la transmisión del conocimiento (enseñanza fundamental) en la que el docente debe otorgar al educando las bases necesarias tanto académicas, sociales y culturales que en interacción con los recursos que se encuentren a su alcance, de como resultado una formación integral que provea a quien la recibe de medios indispensables para su posterior formación y superación como persona de bien en los diferentes roles que ejerza.

Se sabe que desde que la humanidad existe, el hombre, en su afán de mejorar su calidad de vida, ha sido capaz de construir o destruir, transformar e inventar, marcando en nuestra historia sucesos importantes y notables que caracterizan significativamente la evolución del hombre. Algunos de estos hechos que han marcado pautas en nuestra historia, son: la invención del lenguaje, primero hablado y después escrito, el descubrimiento del fuego, la invención de la rueda, del papel, de la imprenta, de la máquina de vapor, y en el último siglo, la era de la electrónica.

Sin lugar a dudas, todos estos inventos y descubrimientos han sido la base del presente que hoy tenemos; presente que vivimos a pasos agigantados y que nos exige cada vez estar a la vanguardia de la era actual: la era de la informática, de las telecomunicaciones, de lo digital, de las nuevas tecnologías que, desde su aparición, han hecho nuestra vida más fácil. Sin embargo no todas las personas tienen acceso a ellas, algunos por desconocimiento de éstas y otros más, por no contar con los recursos necesarios para tener acceso a todas ellas, enfrentándonos así a un fenómeno llamado brecha digital.
Hoy en día, es casi inimaginable encontrar algún área en la que la tecnología no esté implicada. Sin embargo, en cuanto al ámbito educativo, aún es difícil creer que algunos sectores de la población estudiantil, a pesar de los avances tecnológicos, no puedan tener acceso a una educación apoyada en las Nuevas Tecnologías de Información y Comunicación (NTIC), que les permita mejorar su nivel formativo, aun cuando nos encontramos que el ambiente en el que nos desarrollamos, está inmerso en ellas.

Actualmente, cuando buscamos algo relacionado a la educación, enseguida encontramos temas relacionados con la educación en la era de la informática o tecnología educativa o mejor aún, impacto de las tecnologías de información y comunicación en la educación. Es cierto que son temas de actualidad y de interés, sin embargo, abordar éstos temas implica como premisa preguntarse: ¿Qué sector de la población tiene derecho a la educación básica?, ¿Cuál es la situación actual de la educación básica?, ¿Qué porcentaje de quienes tienen acceso a la educación básica tienen acceso a las NTIC?, ¿El sistema educativo mexicano está preparado para enfrentarse a los avances tecnológicos?

Una de las mayores pretensiones en materia de educación, consiste en la introducir a las NTIC en el aula y en consecuencia utilizarlas como apoyo didáctico, cuya finalidad sería que los estudiantes mejoren su aprovechamiento escolar y reciban una mejor calidad en su educación. Es un proceso aun difícil, pues el reto consiste en involucrar y familiarizar tanto al estudiante como al docente en el uso de las nuevas tecnologías como apoyo en el proceso enseñanza-aprendizaje, pero además se tiene que buscar la manera de que el sistema educativo mexicano antes de que incorpore en sus planes de educación la implementación de las NTIC, se ocupe de atender los rezagos educativos que aún existen, para que entonces puedan ser aprovechadas en todo su esplendor.
1.3 Políticas educativas del Estado Mexicano.

Federico Lazarín (1996) considera que a partir de 1940, la política educativa en nuestro país dio un giro completo, pues el Estado mexicano se olvidó del bienestar del campesino y se hizo a un lado el proyecto agrícola (pensado por los gobiernos de la reconstrucción nacional a partir de Álvaro Obregón hasta Lázaro Cárdenas) que se pretendía desarrollara al país y que no había logrado tal propósito, por lo tanto, la educación de la comunidad rural dejó de ser prioritaria. Ahora se imponía el "ideal industrial", y a partir de esta década, el futuro del país se haría descansar en la industria, no importaba que ésta fuese nacional o extranjera, de tal manera que la educación rural se convirtió en asunto secundario para la política estatal y la educación urbana ocupó la atención en las prioridades del gobierno federal. El momento, aparentemente, era más que oportuno: las potencias mundiales (Alemania, Francia, Inglaterra, Italia, Japón y Estados Unidos) estaban librando batallas en la segunda guerra mundial; por lo que, Manuel Ávila Camacho (1940-1946), Miguel Alemán Valdez (1946-1952) y Adolfo Ruiz Cortines (1952-1958) impulsaron una política que pretendía industrializar al país, aprovechando la escasez –provocada por la guerra de productos manufacturados extranjeros.

A partir de esa prioridad, la política educativa favoreció la instrucción urbana así como los estudios técnicos y superiores, de tal manera, que el aprendizaje fue subordinado al esfuerzo industrial. El gobierno de Ávila Camacho “reencauzó la educación pública hacia pautas liberales e impulsó una reforma del artículo Tercero constitucional (1945) con lo que se cerró el ciclo histórico de la educación socialista” Guevara Niebla (1992) y se reanudó el de la educación liberal. Dentro de este periodo, que va de 1940 a 1982, se pueden observar tres subperíodos que distinguen a la política educativa: el primero, de 1940 a 1958, cuando se da el viraje hacia la instrucción urbana y con énfasis en la capacitación para el trabajo industrial; el segundo, a partir de 1958 hasta 1970, cuando, por primera vez, la administración gubernamental se dio cuenta de que la educación era un problema que se debía de resolver a largo plazo y no en un sexenio, de tal forma que se propuso el Plan de once años. El tercero, se inició en 1970, con la llegada de Luis
Echeverría (1970-1976) al poder y que produjo un replanteamiento de la política educativa generada, entre otros acontecimientos, por el movimiento estudiantil de 1968.

1.3.1 Una escuela para unir a los mexicanos. 1940-1958.
Durante el subperiodo de 18 años, de 1940-1958, ocuparon el cargo de Secretario de Educación cinco personajes: Luis Sánchez Pontón (diciembre de 1940 a septiembre de 1941), Octavio Véjar Vázquez (septiembre de 1941 a diciembre de 1943), Jaime Torres Bodet (diciembre de 1943 a noviembre de 1946), Manuel Gual Vidal (diciembre de 1946 a noviembre de 1952) y José A. Ceniceros (diciembre de 1952 a noviembre de 1958). (Meneses Morales, Ernesto, 1988).

En el año de 1942, se reformaron los planes y programas educativos, los proyectos que se presentaron buscaban eliminar la coeducación (a las escuelas iban niños y niñas, por lo que causaban gran controversia en la sociedad mexicana), también, se pretendía revisar el artículo Tercero de la Constitución para eliminarle el término socialista, que se impuso en 1934, y la unificación de los programas de educación urbana y rural en un solo programa urbano avanzado para “unir al pueblo (campo) con la ciudad”; ahora el objetivo de la educación sería “desarrollar de manera armoniosa las facultades del espíritu humano, inculcando al mismo tiempo el amor a la patria y un sentimiento de solidaridad internacional por la paz y la justicia”. (Ruiz, Ramón Eduardo, 1960).

En el informe de la SEP, correspondiente al año de 1941, se decía que “… las grandes empresas a realizar” serían “… crear el tipo de hombre, de trabajador y de técnico que está exigiendo el desarrollo económico del país, y elevar la cultura general en los dominios de la ciencia y del arte”, para lograrlo, se unificarían los “sistemas de enseñanza”, se precisarían las “normas pedagógicas”, se corregirían
“errores” y se definirían las “responsabilidades concretas de los funcionarios de la educación”.

1.3.2 El Plan de once años. 1958-1968.

Para el año de 1958, con la llegada al poder de Adolfo López Mateos (1958-1964) y el regreso de Torres Bodet a la SEP –a pesar de que se observó que la educación era un proyecto que tenía que realizarse en un plazo mayor de seis años–, la política educativa, esencialmente, se rigió por el precepto constitucional que establecía que la instrucción impartida por el Estado “tenderá a desarrollar armónicamente todas las facultades del ser humano y fomentará en él, a la vez, el amor a la Patria y la conciencia de la solidaridad internacional en la independencia y en la justicia”.(SEP, 1964).

Los logros más importantes de este sexenio fueron, en primer lugar, establecer un plan de educación para once años, en los que se pensaba abatir el problema educativo del país y, en segundo, la creación de los libros de texto gratuito.

El Plan de once años se propuso después de que se realizó un estudio sobre la situación que guardaba la educación de la población en la cual los resultados obtenidos fueron alarmantes, por ejemplo, de cada mil niños que lograban ingresar a primer grado de primaria, sólo uno llegaba al último grado de profesional y sólo 59 ingresaban en un establecimiento de seguida enseñanza. De cada mil niños que se inscribían en las listas de primer grado de las escuelas rurales del país, sólo 22 obtenían un certificado de educación primaria y 81% de las rurales no eran todavía escuelas completas, es decir, que no ofrecían los seis grados de instrucción primaria. (Greaves, 1994).

Los datos arrojaban resultados no deseables, pues después de más de treinta años de existencia de la SEP, el rezago educativo entre la población era grave, y más grave aún en el campo, por lo que se pensó que un plan, como el de los once años, permitiría acabar con el problema, sobre todo si se contaba con la ayuda de
los libros de texto gratuito que fueron repartidos en todas las escuelas del país, no importaba que fuesen oficiales o particulares, pues con ellos se garantizaba que la mayor parte de los niños en edad escolar del país contaran con un material de ayuda a los cursos en los diferentes grados. Finalmente, el Plan sólo fue un programa ambicioso que sin embargo no logró tampoco la solución definitiva al problema cuantitativo de la enseñanza primaria debido a que solo atendió a los niños que tenían la posibilidad de asistir a la escuela.

1.3.3 Enseñar haciendo: aprender produciendo. 1968-1982.

En el año de 1968, Díaz Ordaz planteó la necesidad de realizar una reforma a la educación, pero se reafirmaba el precepto constitucional que imponía como fin de la educación el desarrollo armónico de las facultades del ser humano y el fomento “por el amor a la Patria y la conciencia de la solidaridad internacional, en la independencia y en la justicia”; en suma, se buscaría “formar hombres, hombres verdaderos a la vez libres y responsables” (SEP, 1969). Los principios de la reforma educativa serían: impartir una educación acorde con las necesidades de los tiempos, modernizando su contenido y sus métodos de formación; capacitar técnica y progresivamente a la población desde el jardín de niños hasta la enseñanza superior; hacer a la educación “permanente”, es decir, continua, desde la preescolar hasta la superior, que no estuviera apoyada en una masa de conocimientos sino que enseñara a pensar, entender y tolerar al individuo y que fuese un proceso formativo que nunca terminara. (Loyo, 1994).

Esta reforma introdujo las pedagogías de “aprender haciendo” para la primaria y “enseñar produciendo” para la educación media y superior; el gobierno definió, entonces, los conceptos "haciendo" como “el adiestramiento elemental, carente de miras utilitarias”, añadiendo que era la interpretación de la “escuela activa”, orientada a tres objetivos: “habituación al razonamiento de los conceptos mediante prácticas de aplicación; procurar el descubrimiento de aptitudes e inclinaciones y
familiarizar al niño en el uso de herramientas fundamentales de trabajo”. Mientras que el término "produciendo" serviría para vitalizar “las tecnologías de la enseñanza media y superior, con lo cual se logra un doble aprovechamiento: mayor interés por las materias del programa y utilidades económicas en beneficio de las propias instituciones y de los alumnos”; estos conceptos de “Aprender haciendo” y “enseñar produciendo” vinculan gradualmente, desde la escuela primaria hasta la enseñanza superior.

La propuesta de reforma educativa se hizo al finalizar el sexenio de Díaz Ordaz, por lo que la tarea de echarlo a andar correspondió al régimen de Luís Echeverría (1970-1976). Es en este momento en donde se inicia el tercer subperiodo, que está marcado por la puesta en marcha de la reforma educativa, y que sufrió modificaciones en su propuesta original, (Víctor Bravo Ahuja estuvo en la titularidad de la SEP), puesto que, para 1972, se plantearon 26 líneas generales que seguiría el gobierno para la práctica educativa. La política educativa propuesta buscaba vigorizar la democracia como sistema de vida y contribuir a la defensa de nuestra independencia. (SEP, 1972).

Los "lineamientos generales" trataban asuntos de política educativa, mecanismos y modalidades de enseñanza (escolar o extraescolar); la formación y proyección profesional del maestro y los procesos de descentralización, administración y comunicación de la SEP y sus entidades. Ahora se buscaba la formación integral del individuo a través de la educación como un proceso intencional, debe de contribuir a crear en las personas una capacidad crítica que les permita percibir sus circunstancias individuales y el papel que desempeñan en la colectividad. Se afirmaba que la reforma a la educación estimularía en el alumnado una actitud “activa durante su aprendizaje” para que se responsabilizara de su propia formación. Esto, más bien, pretendía propiciar que los educandos que no pudiesen seguir sus estudios por razones económicas o sociales, continuaran independientemente de su condición social y familiar, puesto que recibirían una educación flexible que les permitiría “aprender por sí mismos y adaptarse a
cualquier oficio o especialidad”, estos conocimientos eran complementados con una “formación básica en las humanidades, la ciencia y la técnica que satisface su necesidad de realización personal” que, además, le hacía comprender la “realidad de su medio ambiente y participar en su transformación”

En 1978, el problema de la educación de la población seguía siendo un problema grave, pues se afirmaba que el país era de tercer año de primaria, puesto que la mayoría de la población sólo alcanzaba a llegar hasta ese nivel de educación primaria, había seis millones de adultos analfabetas y 1.2 millones de personas de distintos grupos étnicos no hablaban español; existían, asimismo, trece millones de adultos que no habían concluido su educación primaria y, aproximadamente, siete millones que no habían podido realizar estudios secundarios, esto significa que dos de cada tres adultos no tenían la instrucción suficiente. (SEP, 1982). Ante tal problemática el gobierno de José López Portillo (1976-1982) no pretendió hacer una reforma educativa, pero sí propuso un programa que abarcaba cinco objetivos:

1. Ofrecer educación básica a toda la población, particularmente a la que está en edad escolar.

2. Vincular la educación terminal con el sistema productivo de bienes y servicios social y nacionalmente necesarios.

3. Elevar la calidad de la educación.

4. Mejorar la atmósfera cultural y fomentar el desarrollo del deporte.

5. Aumentar la eficiencia del sistema educativo.

Es importante destacar que, por primera vez, se habla de vincular la educación terminal con el sistema productivo, este discurso denota una concepción distinta de la educación así como la importancia que tendría la educación para la evolución de la economía del país; se mencionaba, incluso, que un “sistema social requiere personas altamente productivas”, por lo que es “indispensable la

En conclusión, se puede afirmar que en el periodo 1940-1982 se impuso el proyecto de educación urbana sobre el rural, la idea de la unificación y homogeneización de los sistemas, planes y proyectos educativos hizo desechar la idea de que existiesen en el país, por lo menos, dos proyectos educativos, uno dirigido a las distintas áreas y regiones de población rural del país y el otro urbano. Este periodo, también se caracteriza por el afianzamiento de un proyecto educativo que procuraría la unidad nacional, la formación de individuos para la democracia e, incluso, se insertó la idea de la solidaridad internacional a partir de los años sesenta.

Durante el periodo que abarca de 1940 a 1982, los proyectos educativos respondían, de manera general, a la política económica que siguieron los gobiernos del siglo XX. A partir del año de 1940 se pensó que la industrialización del país era la mejor manera de lograr el progreso nacional, por tanto, la educación que se promovió fue la urbana, con la idea de capacitar mano de obra para la industria y los servicios.
1.4 Tamaño y composición del sistema educativo nacional; el problema de la Educación Básica.

1.4.1 Contexto sociodemográfico.

A continuación, la información que aquí se presenta, se basa en el informe anual 2005 del Instituto Nacional para la Evaluación de la Educación (INEE).

Como es sabido, los servicios educativos generalmente se ofrecen mejor en localidades o ciudades grandes que en localidades muy pequeñas, sobre todo si estas se encuentran dispersas. Tomando como referencia el XII Censo de población y vivienda del INEGI, en el año 2000, había sólo 3 mil 041 localidades con más de 2 mil 500 habitantes, frente a 196 mil 350 con menos de esa cifra. La distribución que existía se muestra en la siguiente tabla:

<table>
<thead>
<tr>
<th>Número de habitantes</th>
<th>Número de localidades</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 250</td>
<td>169,191</td>
<td>84.85</td>
</tr>
<tr>
<td>De 250 a 499</td>
<td>13,166</td>
<td>06.60</td>
</tr>
<tr>
<td>De 500 a 2,499</td>
<td>13,993</td>
<td>07.02</td>
</tr>
<tr>
<td>Más de 2,500</td>
<td>3,041</td>
<td>01.53</td>
</tr>
<tr>
<td>TOTAL</td>
<td>199,391</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: XII Censo de Población y Vivienda.2000. INEGI

Como se puede observar, hay una enormidad de núcleos de población que se encuentran dispersos y con pocos habitantes.

De acuerdo a la gráfica 1, nos podemos percatar de que algunas entidades tienen cantidades considerables de pequeñas comunidades rurales, aun cuando la proporción de su población sea comparativamente baja. Veamos que, de acuerdo
a las estadísticas, en los estados de Veracruz, Chiapas, Chihuahua, Jalisco, Tamaulipas, Oaxaca y Michoacán, se concentra casi la mitad (48.7%) de esas minúsculas localidades a nivel nacional.

GRÁFICA 1. CONCENTRACIÓN DE LOCALIDADES RURALES CON MENOS DE 250 HABITANTES EN ENTIDADES FEDERATIVAS

Según los datos del INEGI, en estas siete entidades existen una mayor proporción de localidades dispersas pues al menos una de cada diez personas habita en comunidades menores a 250 habitantes, condición demográfica muy distinta a la que presentan, por ejemplo, Baja California, Nuevo León y el Distrito Federal, donde más del noventa por ciento de la población reside en localidades urbanas.

Es de suma importancia considerar que, para ofrecer los servicios básicos necesarios para el bienestar de una población; en especial educativos; hay que considerar que, como se mencionó en un principio, estos pueden ofrecerse con mayor facilidad en localidades relativamente grandes y no en poblaciones muy...
pequeñas, pues para establecer una escuela, se requiere la presencia de una demanda mínima, la cual depende directamente del número de habitantes de la localidad de que se trate, por ello, la dispersión de la población rural en localidades pequeñas dificulta la prestación adecuada de diversos servicios, entre ellos los educativos. La universalización de la educación básica en esas comunidades requeriría que el sistema educativo amplíe su cobertura.
1.4.2 Influencia del contexto sociodemográfico sobre los tipos de servicios educativos.

Como se sabe, el número de escuelas depende del de número de alumnos, pero también del tamaño de los planteles, es decir; si hay muchas escuelas grandes, el número de éstas será menor que si hay muchas pequeñas. De acuerdo a las estadísticas del INEE, más de la mitad de las escuelas del país (51.9 por ciento) se concentran solamente en ocho entidades, tal y como se observa en la siguiente gráfica:

GRAFICA 2. CONCENTRACIÓN DE ESCUELAS DE EDUCACIÓN BÁSICA EN LAS ENTIDADES FEDERATIVAS

Fuente: INEE, con datos del XII Censo de Población y Vivienda 2000. INEGI.

Como puede apreciarse en la gráfica 2, existen contrastes muy notables, los datos del INEE indican que, por ejemplo, Veracruz tiene más de 19 mil escuelas de educación básica, frente a cerca de mil en Baja California Sur. El Distrito Federal, cuyas escuelas son por lo general grandes, tiene un total menor no sólo al del
estado de México y otros muy poblados como Veracruz y Jalisco, sino también que Oaxaca, Chiapas, Michoacán o Guerrero. Veracruz tiene 9 mil 794 primarias seguido por Chiapas (8 mil 332) y el estado de México (7 mil 500). El Distrito Federal ocupa el lugar 11° con 3 mil 392 planteles.

Esto nos lleva a pensar en que la dificultad de atender un sistema estatal de casi 20 mil escuelas, como en Veracruz, de casi 18 mil como en el estado de México, o de más de 16 mil, como en Chiapas, es muy diferente a ocuparse de mil escuelas o menos, como en Colima y Baja California Sur.

Debido a la existencia de un gran número de localidades muy pequeñas en el país, la cantidad de las escuelas diseñadas para atender esa población dispersa es también muy grande. El tamaño de la población, su concentración o dispersión y su accesibilidad, se traducen en que haya menos escuelas grandes o pequeñas, de organización completa o incompleta.

En el 2004 el INEE subrayó la importancia de las telesecundarias, que representan más de la mitad de todas las escuelas secundarias en el país.

También llama la atención que existan demasiadas escuelas multigrado o de organización incompleta, en las cuales uno o más docentes deben atender a estudiantes de dos o más grados. En el caso extremo, un solo maestro atiende a alumnos de los seis grados de primaria; en otros, un docente atiende a alumnos de dos o más grados.

Los cursos comunitarios del Conafe son, en casi todos los casos, multigrado; pero también en las primarias generales, a cargo de las Secretarías de Educación de las entidades, hay planteles de este tipo, tal y como se puede apreciar en la tabla 2.

A nivel nacional, 44.5 por ciento de las primarias del país son multigrado. Los cursos comunitarios del Conafe tienen todos esos tipos de organización, pero también el 32.9 por ciento de las primarias generales son de organización
incompleta y la proporción de planteles multigrado entre las primarias indígenas alcanza los dos tercios: 63.8 por ciento.

Como las escuelas de organización incompleta son muy pequeñas, la proporción de la matrícula atendida, así como la inscrita en los diversos tipos de servicios educativos es diferente a la proporción de los planteles de cada tipo. Así, la matrícula de los cursos comunitarios es menos del uno por ciento del total de primaria, aunque los planteles de este tipo sean casi 13 de cada cien de las primarias del país.

En forma similar, las escuelas indígenas tienen una proporción de los alumnos de primaria menor a la que representan las escuelas (5.7 vs. 9.9 por ciento del total nacional), tal y como lo indican las tablas 2 y 3. Las escuelas generales, por su parte, incluyendo públicas y privadas, son 77.5 por ciento del total de los planteles de primaria, pero atienden a 93.4 de la matrícula del nivel.

TABLA 2. ESCUELAS PRIMARIAS POR TIPO DE SERVICIO

<table>
<thead>
<tr>
<th>Primarias por tipo de servicio</th>
<th>Organización completa</th>
<th>Organización incompleta</th>
<th>T O T A L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absoluto</td>
<td>% ↘</td>
<td>% ↓</td>
</tr>
<tr>
<td>Escuelas generales 3</td>
<td>51,022</td>
<td>67.1</td>
<td>93.57</td>
</tr>
<tr>
<td>Escuelas indígenas 4</td>
<td>3,506</td>
<td>36.2</td>
<td>6.43</td>
</tr>
<tr>
<td>Cursos comunitarios 5</td>
<td>0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,528</td>
<td>55.5</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fuente: INEE. Estimaciones a partir de la base de datos de inicio del ciclo escolar 2004-2005, UPEPE-SEP.

TABLA 3. MATRÍCULA DE PRIMARIA POR TIPO DE SERVICIO

<table>
<thead>
<tr>
<th>Primarias por tipo de servicio</th>
<th>Organización completa</th>
<th>Organización incompleta</th>
<th>T O T A L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absoluto</td>
<td>% ↘</td>
<td>% ↓</td>
</tr>
<tr>
<td>Escuelas generales 6</td>
<td>12,677,861</td>
<td>92.6</td>
<td>95.61</td>
</tr>
<tr>
<td>Escuelas indígenas 7</td>
<td>581,915</td>
<td>69.5</td>
<td>4.39</td>
</tr>
<tr>
<td>Cursos comunitarios 8</td>
<td>0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13,259,776</td>
<td>90.5</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fuente: INEE. Estimaciones a partir de la base de datos de inicio del ciclo escolar 2004-2005, UPEPE-SEP.
Como podemos percatarnos, las desigualdades del sistema educativo de las entidades del país son evidentes, así como la concentración de las escuelas de organización incompleta en donde hay más localidades pequeñas: en sólo dos estados, Chiapas y Veracruz, se concentra la cuarta parte del total de las primarias multigrado del país (11 mil 061 de 43 mil 650). Cuatro entidades más – Oaxaca, Michoacán, Guerrero y Jalisco – concentran una cuarta parte adicional del total del multigrado.

La diferencia abismal que distingue unas entidades de otras, se aprecia observando que la proporción de escuelas multigrado en el total de las primarias de una entidad va desde uno por ciento en el Distrito Federal, hasta cerca de setenta por ciento en Chiapas, y alrededor de sesenta por ciento en Durango y San Luís Potosí.

Podemos decir que, es clara la relación entre ciertas características del contexto y algunas del sistema educativo: en general, un valor alto del Índice de Desarrollo Humano se acompaña de un menor número de localidades pequeñas, una menor proporción de población indígena, menos primarias multigrado y menos telesecundarias.

El ordenamiento de entidades según el Índice de Desarrollo Humano muestra una relación inversa con el número de las escuelas en las modalidades de mayores carencias.

La siguiente información fue consultada en el portal de La Organización de los estados Iberoamericanos para la Educación, la Ciencia y la Cultura (http://www.oei.es/) en donde la Secretaría de Educación Pública (SEP) como responsable de la Planeación Educativa Nacional (SEN), presenta una publicación con las estadísticas más relevantes del sistema educativo correspondiente al ciclo escolar 2004-2005, tomando indicadores de la estadística educativa y las proyecciones de población que elaboró el Consejo Nacional de Población (Conapo) en su última versión (noviembre de 2002) ajustada con el XII Censo General de Población y Vivienda de 2000.

1.5.1 Esquema general del sistema educativo nacional.

La tabla 4, nos muestra la composición del Sistema Educativo de los Estados Unidos Mexicanos, de donde podemos apreciar que, los tipos de educación que un individuo puede recibir en México se dividen en tres etapas: Educación básica, Educación media superior y Educación superior. Se puede apreciar los niveles que comprende cada tipo educativo, así como los tipos de servicios en que se puede recibir la educación.

Aunque sería interesante analizar cómo se encuentra el Sistema Educativo Nacional en sus tres tipos educativos, nuestro interés radica en la educación básica, por lo que a continuación se verán cifras que nos indiquen la situación actual en ésta etapa.
1.5.2 Estadísticas generales por nivel y tipo de sostenimiento de la educación básica.

La enseñanza básica constituye el tipo educativo más numeroso del Sistema Educativo Nacional, en el cual los alumnos adquieren los conocimientos y las habilidades intelectuales fundamentales, con el propósito de facilitar la sistematización de los procesos de aprendizaje y el desarrollo de valores que alienten su formación integral como personas.

Comprende la instrucción preescolar, en la que se imparten algunos conocimientos y se estimula la formación de hábitos; la instrucción primaria, donde se inicia a los educandos en el conocimiento científico y las disciplinas sociales; y por último la instrucción secundaria, en la que se amplían y reafirman los conocimientos científicos por medio de la observación, la investigación y la práctica.
En la educación básica se brindan las bases y los elementos que todos los niños y jóvenes del país deben tener a su alcance para desempeñarse activa y comprometidamente en los distintos ámbitos de la vida.

La educación básica corresponde al tipo educativo de mayor población escolar, con 24.6 millones de alumnos, equivalente al 77.4 % del sistema educativo. De éstos, la mayor parte, 59.5 %, asiste a la educación primaria, 23.9 % a la educación secundaria y el 16.6 % a educación preescolar, (Véase gráfica. 3).

La educación básica es atendida por 1.08 millones de maestros, 66.8 % de todos los maestros del sistema educativo. La alta dispersión de la población rural da como resultado un menor promedio de alumnos por maestro con relación a la educación media superior y superior, donde existe una mayor concentración de alumnos debido a que esos niveles están ubicados principalmente en zonas urbanas. Este fenómeno se refleja con mayor claridad en el número de escuelas (208 830), tomando en cuenta que la educación básica cubre el 90.3% de las escuelas del sistema educativo.

La educación primaria y secundaria son servicios obligatorios por ley y la educación preescolar está en proceso de incorporarse a esta normatividad. El 91.3 % de los alumnos de educación básica asiste a escuelas públicas (84.5 % en servicios coordinados por los gobiernos estatales y 6.8 % en escuelas administradas por la federación) y el 8.7 % corresponde a alumnos de escuelas particulares, tal y como se puede apreciar en la gráfica 3 de alumnos por sostenimiento y por nivel:
1.5.2.1 Estadísticas en la educación preescolar: por servicio y por sostenimiento.

La educación preescolar constituye la fase inicial del sistema escolarizado, precede a la educación primaria y se conforma de tres grados. Al primer grado asisten niños de tres años de edad; al segundo, niños de cuatro años; y al tercer grado se inscriben los niños de cinco años.

Como nos muestra la gráfica 4, en cuanto a los alumnos que reciben educación preescolar por tipo de servicio, podemos ver que el 86.1% de los alumnos es atendido en preescolar general, conocido también como jardines de niños. El 8.4%
de los niños asiste a las escuelas indígenas, donde se imparte una educación intercultural bilingüe, el 2.1% asiste a los Centros de Desarrollo Infantil (Cendi) y el 3.4% restante asiste a preescolar comunitario, que se imparte en localidades rurales con menos de 500 habitantes; este servicio se adoptó como una estrategia para responder a la demanda educativa de población con alto grado de dispersión y marginalidad, es generalmente unitario (es atendido por un solo instructor comunitario), y es operado por el Consejo Nacional de Fomento Educativo (Conafe), organismo descentralizado de la Secretaría de Educación Pública.

En cuanto a alumnos por sostenimiento, el 78.0% de los niños asiste a escuelas de sostenimiento estatales; el 9.2% corresponde a alumnos de escuelas sostenidas por la federación, que incluye básicamente a preescolar comunitario y los servicios del Distrito Federal que son administrados directamente por la Secretaría de Educación Pública. Los niños inscritos en escuelas particulares cubren el 12.8 % de la matrícula.

GRÁFICA 4. ESTADÍSTICAS POR SERVICIO Y POR SOSTENIMIENTO DE LA EDUCACIÓN PREESCOLAR EN MÉXICO.
1.5.2.2 Estadísticas en la educación primaria: por servicio y por sostenimiento.

La educación primaria constituye el segundo nivel del tipo básico, se cursa en seis grados y su conclusión es requisito indispensable para ingresar a la secundaria. Este nivel educativo es obligatorio, y los servicios que presta el Estado son gratuitos. La modalidad escolarizada se otorga para niños y jóvenes de 6 a 14 años de edad; la educación para adultos está orientada a la atención de jóvenes de 15 años o más de edad.

A la educación primaria asisten 14.7 millones de niños y jóvenes, equivalente al 59.5 % de la educación básica y 46.1 % de todo el sistema educativo, ubicándose como el nivel educativo de mayor dimensión y cobertura entre la población demandante, ya que al sistema escolarizado para este ciclo escolar asisten el 92.9 % de la población de seis a 12 años de edad. El reto, para alcanzar la cobertura universal, se ubica en localidades con un alto grado de dispersión poblacional, en la población con alguna discapacidad, niños migrantes y urbano-marginados, entre otros.

Como se puede apreciar en la gráfica 5, la educación primaria se imparte en tres servicios: la primaria general abarca el 93.4 % de la matrícula, la primaria indígena o bilingüe y bicultural alcanza el 5.7 % y la educación comunitaria, denominada también “Cursos comunitarios”, que opera en localidades rurales con menos de 100 habitantes, cubre el 0.9% de este nivel. Igual que en la educación preescolar, como consecuencia de la federalización, el 85.8 % de los alumnos asiste a escuelas administradas por los gobiernos estatales; la administración federal atiende al 6.1 por ciento, que se ubica principalmente en los cursos comunitarios y el Distrito Federal. La educación impartida por particulares alcanza el 8.1 por ciento.
1.5.2.3 Estadísticas en la educación secundaria: por servicio y por sostenimiento.

La educación secundaria es el tercero y último nivel que conforma a la educación básica. Se cursa en tres grados y es de carácter propedéutica, es decir, necesaria para ingresar al nivel medio superior. Se imparte en los servicios de secundaria general, telesecundaria, secundaria técnica y para trabajadores. Igual que en primaria, la educación secundaria también es de carácter obligatorio.

De los alumnos egresados del ciclo anterior de la educación primaria, el 95.0 % ingresó a primer grado de la educación secundaria en el ciclo escolar 2004-2005. La matrícula de este nivel educativo, que asciende a 5.9 millones de alumnos, se atiende en cuatro opciones de servicios: la secundaria general cubre el 50.5 %; la telesecundaria, el 20.6 %; la secundaria técnica tiene una cobertura del 28.2 %, en la que se capacita a los alumnos en alguna actividad tecnológica industrial, comercial, agropecuaria, pesquera o forestal; y la secundaria para trabajadores da servicio al 0.7 por ciento. Cabe señalar que la telesecundaria ha experimentado el mayor crecimiento en los últimos años, en virtud de que el mayor rezago educativo
se localiza en las zonas rurales. Actualmente el 88.2 % de los jóvenes de 13 a 15 años asiste a este nivel educativo.

Los sostenimientos autónomo y el administrado por los gobiernos estatales cubren el 85.4% de los alumnos; el 7.1 % se atiende en escuelas federales, que corresponde casi en su totalidad a los planteles del Distrito Federal, y el 7.5 % restante agrupa a la población que asiste a escuelas particulares, tal y como se puede apreciar en la gráfica 6.

A diferencia de la educación preescolar y primaria, donde a cada grupo de alumnos corresponde un maestro, en la educación secundaria un grupo es atendido por diferentes maestros, uno por cada materia cursada, por ello la relación de alumnos se presenta por grupo en vez de por maestro.

GRÁFICA 6. ESTADÍSTICAS POR SERVICIO Y POR SOSTENIMIENTO DE LA EDUCACIÓN SECUNDARIA EN MÉXICO.
1.6 Tipos de recursos tecnológicos en escuelas de educación básica en México.

La siguiente información presentada en tablas, muestra, de acuerdo a las escuelas censadas de cada nivel de educación básica (excluyendo preescolar), el equipamiento tecnológico con que cuentan por estado, entendiéndose como equipamiento tecnológico número de computadoras con que cuenta una entidad y de éstas; número de computadoras con servicio de Internet, escuelas con red edusat o con videoteca. La información se presenta de acuerdo a los servicios de cada nivel.

1.6.1 Cifras totales de tipo de equipamiento tecnológico de escuelas primarias por estados.

La tabla 5 muestra el total de las escuelas de nivel primaria (incluyendo sector público y particular) con que cuenta nuestro país; México.

En cifras generales y de acuerdo a los datos arrojados por el censo realizado durante el ciclo 2004-2005, se tiene que en el país de México, existen 98 178 escuelas primarias; de las cuales, 82 897 fueron censadas (84.43%). Se calculó que 34 573 escuelas cuentan con computadoras; es decir el 41.70%, las cuales representan un total de 288 726 equipos de cómputo, de estos, 74 343 (25.74%) tienen Internet, el 4.11% de las escuelas censadas tienen red edusat (3 413) y con videoteca existe el 17.02% (14 111). Esto a nivel nacional.

Así mismo, por entidad; se puede apreciar la cantidad de escuelas primarias que existen y de estas, se obtuvieron datos específicos sobre el total de computadoras y los servicios con que estas cuentan. Por ejemplo, el estado de Veracruz es uno de los estados en donde se presenta el mayor número de escuelas primarias, pues tiene 9 794 escuelas de un total de 98 178, lo cual indica que, casi el 10%
(9.97%) del total de las escuelas primarias de todo el país, se concentran en el estado de Veracruz.

En el estado de Veracruz, se censaron 6 407 (65.41%). De las cuales, sólo 1 458 (22.75%) primarias están equipadas con computadoras. Considerando que esas 1458 escuelas equipadas cuentan con más de una computadora, se tiene que existe un total de 10 007 computadoras, de estas, sólo 1 619 cuentan con Internet (16.17%). 82 escuelas tienen red edusat (1.27%) y 737 poseen videoteca (11.50%).

TABLA 5. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS TOTALES DE PRIMARIAS

<table>
<thead>
<tr>
<th>ENTRIDAD FEDERATIVA</th>
<th>EXISTENTES</th>
<th>CENSADAS</th>
<th>COMPUTADORAS</th>
<th>TOTAL DE COMPUTADORAS</th>
<th>INTERNET</th>
<th>RED EDUSAT</th>
<th>VIDEOTECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguescatlanos</td>
<td>7 10</td>
<td>854</td>
<td>447</td>
<td>7 196</td>
<td>854</td>
<td>136</td>
<td>114</td>
</tr>
<tr>
<td>Baja California</td>
<td>1 528</td>
<td>1 470</td>
<td>752</td>
<td>2 340</td>
<td>2 044</td>
<td>40</td>
<td>260</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>400</td>
<td>400</td>
<td>198</td>
<td>1 385</td>
<td>692</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>Campeche</td>
<td>840</td>
<td>846</td>
<td>100</td>
<td>1 262</td>
<td>232</td>
<td>17</td>
<td>102</td>
</tr>
<tr>
<td>Coahuila</td>
<td>1 780</td>
<td>1 093</td>
<td>614</td>
<td>2 394</td>
<td>3 720</td>
<td>397</td>
<td>247</td>
</tr>
<tr>
<td>Colima</td>
<td>463</td>
<td>433</td>
<td>259</td>
<td>2 373</td>
<td>947</td>
<td>51</td>
<td>86</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>6 332</td>
<td>5 237</td>
<td>359</td>
<td>2 795</td>
<td>680</td>
<td>73</td>
<td>154</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>2 949</td>
<td>1 487</td>
<td>788</td>
<td>4 189</td>
<td>2 461</td>
<td>136</td>
<td>342</td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>3 262</td>
<td>3 262</td>
<td>3 062</td>
<td>10 777</td>
<td>11 372</td>
<td>78</td>
<td>1 075</td>
</tr>
<tr>
<td>Durango</td>
<td>2 409</td>
<td>2 409</td>
<td>628</td>
<td>4 232</td>
<td>1 154</td>
<td>120</td>
<td>154</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>4 577</td>
<td>3 852</td>
<td>2 900</td>
<td>15 488</td>
<td>4 066</td>
<td>87</td>
<td>709</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>4 865</td>
<td>2 300</td>
<td>547</td>
<td>4 444</td>
<td>1 240</td>
<td>186</td>
<td>147</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>3 237</td>
<td>2 714</td>
<td>1 218</td>
<td>6 555</td>
<td>1 263</td>
<td>120</td>
<td>455</td>
</tr>
<tr>
<td>Jalisco</td>
<td>5 944</td>
<td>5 844</td>
<td>1 503</td>
<td>17 355</td>
<td>4 517</td>
<td>122</td>
<td>910</td>
</tr>
<tr>
<td>México</td>
<td>7 008</td>
<td>7 496</td>
<td>4 949</td>
<td>40 246</td>
<td>7 537</td>
<td>197</td>
<td>2 075</td>
</tr>
<tr>
<td>Michoacán</td>
<td>5 467</td>
<td>4 176</td>
<td>1 118</td>
<td>10 343</td>
<td>2 670</td>
<td>196</td>
<td>450</td>
</tr>
<tr>
<td>Morelos</td>
<td>1 020</td>
<td>1 020</td>
<td>440</td>
<td>4 540</td>
<td>1 250</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>Nayarit</td>
<td>1 163</td>
<td>1 128</td>
<td>222</td>
<td>1 492</td>
<td>626</td>
<td>56</td>
<td>73</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>2 530</td>
<td>2 530</td>
<td>1 248</td>
<td>15 235</td>
<td>4 722</td>
<td>75</td>
<td>526</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>5 550</td>
<td>4 726</td>
<td>752</td>
<td>3 318</td>
<td>622</td>
<td>115</td>
<td>171</td>
</tr>
<tr>
<td>Puebla</td>
<td>4 474</td>
<td>4 454</td>
<td>3 720</td>
<td>12 376</td>
<td>2 040</td>
<td>92</td>
<td>595</td>
</tr>
<tr>
<td>Querétaro</td>
<td>1 409</td>
<td>1 409</td>
<td>870</td>
<td>7 474</td>
<td>1 261</td>
<td>100</td>
<td>593</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>740</td>
<td>740</td>
<td>339</td>
<td>3 318</td>
<td>200</td>
<td>99</td>
<td>69</td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>2 476</td>
<td>2 751</td>
<td>675</td>
<td>9 175</td>
<td>1 242</td>
<td>124</td>
<td>228</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>2 560</td>
<td>2 334</td>
<td>750</td>
<td>9 407</td>
<td>3 211</td>
<td>224</td>
<td>373</td>
</tr>
<tr>
<td>Sonora</td>
<td>1 912</td>
<td>1 708</td>
<td>674</td>
<td>7 844</td>
<td>3 460</td>
<td>111</td>
<td>246</td>
</tr>
<tr>
<td>Tabasco</td>
<td>2 160</td>
<td>1 919</td>
<td>378</td>
<td>2 835</td>
<td>651</td>
<td>88</td>
<td>111</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>2 425</td>
<td>2 169</td>
<td>600</td>
<td>10 111</td>
<td>4 320</td>
<td>138</td>
<td>372</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>701</td>
<td>701</td>
<td>322</td>
<td>2 197</td>
<td>692</td>
<td>20</td>
<td>138</td>
</tr>
<tr>
<td>Veracruz</td>
<td>9 794</td>
<td>6 427</td>
<td>1 408</td>
<td>10 007</td>
<td>1 019</td>
<td>82</td>
<td>757</td>
</tr>
<tr>
<td>Yucatán</td>
<td>1 367</td>
<td>1 367</td>
<td>707</td>
<td>7 587</td>
<td>1 570</td>
<td>206</td>
<td>152</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>2 565</td>
<td>1 858</td>
<td>652</td>
<td>9 350</td>
<td>607</td>
<td>90</td>
<td>527</td>
</tr>
</tbody>
</table>

TOTAL NACIONAL 68 175 82 897 34 673 239 726 74 343 3 413 14 111

* Incluye la información de escuelas censadas en 2004-2005, así como la información de 2003-2004 de las escuelas que no informaron en el presente ciclo escolar y sí fueron censadas en el ciclo escolar anterior.
1.6.1.1 Tipo de equipamiento tecnológico de escuelas primarias por estado. Sector público.

En cuanto al sector público de las escuelas primarias, se tiene que de un total de 98 178 escuelas primarias; 91 222 son públicas, lo cual corresponde al 92.91%.

TABLA 6. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PÚBLICO, PRIMARIAS

<table>
<thead>
<tr>
<th>ENTIDAD FEDERATIVA</th>
<th>EXISTENTES</th>
<th>CENSADAS</th>
<th>COMPUTADORAS</th>
<th>TOTAL DE COMPUTADORAS</th>
<th>INTERNET</th>
<th>RED EDUSAT</th>
<th>VIDEOTECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguascalientes</td>
<td>322</td>
<td>209</td>
<td>329</td>
<td>6 024</td>
<td>315</td>
<td>128</td>
<td>00</td>
</tr>
<tr>
<td>Baja California</td>
<td>1 312</td>
<td>1 063</td>
<td>557</td>
<td>3 579</td>
<td>1 090</td>
<td>30</td>
<td>174</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>271</td>
<td>271</td>
<td>150</td>
<td>922</td>
<td>348</td>
<td>24</td>
<td>59</td>
</tr>
<tr>
<td>Campeche</td>
<td>607</td>
<td>607</td>
<td>116</td>
<td>745</td>
<td>147</td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td>Coahuila</td>
<td>1 035</td>
<td>1 035</td>
<td>759</td>
<td>6 043</td>
<td>2 200</td>
<td>298</td>
<td>172</td>
</tr>
<tr>
<td>Colima</td>
<td>441</td>
<td>299</td>
<td>223</td>
<td>1 519</td>
<td>962</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td>Chiapas</td>
<td>3 237</td>
<td>3 152</td>
<td>203</td>
<td>1 783</td>
<td>514</td>
<td>71</td>
<td>114</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>2 561</td>
<td>2 561</td>
<td>603</td>
<td>5 735</td>
<td>1 420</td>
<td>126</td>
<td>274</td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>2 200</td>
<td>2 200</td>
<td>2 242</td>
<td>20 017</td>
<td>2 020</td>
<td>57</td>
<td>1 222</td>
</tr>
<tr>
<td>Durango</td>
<td>2 424</td>
<td>2 424</td>
<td>687</td>
<td>3 160</td>
<td>709</td>
<td>118</td>
<td>128</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>4 377</td>
<td>3 588</td>
<td>7 718</td>
<td>10 075</td>
<td>1 992</td>
<td>61</td>
<td>558</td>
</tr>
<tr>
<td>Guerrero</td>
<td>4 759</td>
<td>2 204</td>
<td>404</td>
<td>3 282</td>
<td>907</td>
<td>100</td>
<td>118</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>3 359</td>
<td>2 835</td>
<td>1 051</td>
<td>6 235</td>
<td>302</td>
<td>120</td>
<td>351</td>
</tr>
<tr>
<td>Jalisco</td>
<td>6 337</td>
<td>5 537</td>
<td>1 146</td>
<td>1 262</td>
<td>116</td>
<td>71</td>
<td>710</td>
</tr>
<tr>
<td>México</td>
<td>8 677</td>
<td>6 826</td>
<td>4 047</td>
<td>26 069</td>
<td>2 385</td>
<td>102</td>
<td>2 371</td>
</tr>
<tr>
<td>Michoacán</td>
<td>9 179</td>
<td>3 813</td>
<td>914</td>
<td>6 784</td>
<td>1 322</td>
<td>160</td>
<td>342</td>
</tr>
<tr>
<td>Morelos</td>
<td>334</td>
<td>604</td>
<td>279</td>
<td>2 317</td>
<td>370</td>
<td>22</td>
<td>145</td>
</tr>
<tr>
<td>Nayarit</td>
<td>1 112</td>
<td>1 068</td>
<td>101</td>
<td>1 265</td>
<td>312</td>
<td>64</td>
<td>50</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>2 395</td>
<td>2 201</td>
<td>1 020</td>
<td>7 872</td>
<td>695</td>
<td>72</td>
<td>405</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>5 037</td>
<td>4 022</td>
<td>3 450</td>
<td>7 386</td>
<td>570</td>
<td>54</td>
<td>637</td>
</tr>
<tr>
<td>Puebla</td>
<td>4 042</td>
<td>4 022</td>
<td>3 450</td>
<td>7 386</td>
<td>570</td>
<td>54</td>
<td>637</td>
</tr>
<tr>
<td>Querétaro</td>
<td>1 382</td>
<td>1 382</td>
<td>728</td>
<td>4 584</td>
<td>254</td>
<td>98</td>
<td>336</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>559</td>
<td>600</td>
<td>228</td>
<td>1 063</td>
<td>104</td>
<td>69</td>
<td>51</td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>3 325</td>
<td>2 601</td>
<td>946</td>
<td>3 742</td>
<td>924</td>
<td>122</td>
<td>173</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>2 737</td>
<td>2 219</td>
<td>642</td>
<td>4 285</td>
<td>1 059</td>
<td>316</td>
<td>305</td>
</tr>
<tr>
<td>Sonora</td>
<td>1 330</td>
<td>1 426</td>
<td>508</td>
<td>4 388</td>
<td>2 054</td>
<td>99</td>
<td>177</td>
</tr>
<tr>
<td>Tabasco</td>
<td>2 070</td>
<td>1 853</td>
<td>312</td>
<td>1 522</td>
<td>100</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>2 281</td>
<td>2 005</td>
<td>748</td>
<td>6 386</td>
<td>2 977</td>
<td>132</td>
<td>292</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>884</td>
<td>884</td>
<td>258</td>
<td>1 483</td>
<td>452</td>
<td>18</td>
<td>105</td>
</tr>
<tr>
<td>Veracruz</td>
<td>9 495</td>
<td>6 142</td>
<td>1 224</td>
<td>6 060</td>
<td>734</td>
<td>78</td>
<td>621</td>
</tr>
<tr>
<td>Yucatán</td>
<td>1 272</td>
<td>1 272</td>
<td>601</td>
<td>4 460</td>
<td>819</td>
<td>200</td>
<td>93</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>2 031</td>
<td>1 748</td>
<td>756</td>
<td>6 063</td>
<td>823</td>
<td>67</td>
<td>608</td>
</tr>
</tbody>
</table>

TOTAL NACIONAL: 21 222 78 034 23 490 178 592 32 851 3 247 10 840

* Incluye la información de escuelas censadas en 2004-2005, así como la información de 2003-2004 de las escuelas que no informaron en el presente ciclo escolar y sí fueron censadas en el año escolar anterior.
De acuerdo a la tabla 6, el estado de Chiapas, seguido por el estado de Veracruz, es uno de los estados con más escuelas primarias de sector público. Pues de 91 222 escuelas primarias públicas, Chiapas cuenta con 8 227, lo cual indica que el 9.01% de este tipo de escuelas se encuentran en este estado.

En Chiapas, 6 132 escuelas fueron censadas, es decir, el 74.53%, de las cuales, 293 escuelas cuentan con computadoras (4.77%), que representan un total de 1 783 equipos de cómputo, de estos 511 cuentan con servicio de Internet (28.65%), 71 tienen red edusat (1.15%) y 114 cuentan con videoteca (1.85%).

En comparación con el estado de Colima, que es uno de los estados que menor número de escuelas primarias sector público tiene, pues de 91 222 escuelas de este tipo, sólo 441 existen en Colima (.48%). De esas 441 escuelas, se censaron 391 (88.66%) de donde se obtuvieron los siguientes datos: 223 escuelas cuentan con computadoras, es decir, 57.03%, que representan 1 519 equipos de cómputo, de estos 693 (45.62%) cuentan con Internet, 50 cuentan con red edusat (12.78%) y con videoteca existen 74; es decir 18.92%.

Como se puede observar, es contrastante la cantidad de recursos tecnológicos existentes entre estados con mayor número de escuelas y estados con menor número de escuelas, pues en Chiapas, por ejemplo, donde se censaron 6 132 escuelas (74.53% del total en ese estado), tan solo 293 tienen computadoras (4.77%); a diferencia de Colima, que de 391 escuelas censadas (88.66% del total en ese estado), 223 tienen computadoras; es decir, el 57.03% de esas escuelas cuentan con al menos computadoras.
1.6.1.2 Tipo de equipamiento tecnológico de escuelas primarias por estado. Sector privado.

En cuanto al sector privado de las escuelas primarias, se tiene que de un total de 98 178 escuelas primarias; 6 956 son privadas, lo cual corresponde al 7.8% del total de escuelas primarias en México.

TABLA 7. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PRIVADO, PRIMARIAS

<table>
<thead>
<tr>
<th>ENTIDAD FEDERATIVA</th>
<th>EXISTENTES</th>
<th>CENSADAS</th>
<th>COMPUTADORAS</th>
<th>TOTAL DE COMPUTADORAS</th>
<th>INTERNET</th>
<th>RED EDUSAT</th>
<th>VIDEOTECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguascalientes</td>
<td>85</td>
<td>85</td>
<td>76</td>
<td>1 594</td>
<td>639</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Baja California</td>
<td>216</td>
<td>207</td>
<td>105</td>
<td>4 281</td>
<td>1 251</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>29</td>
<td>29</td>
<td>27</td>
<td>543</td>
<td>244</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Campeche</td>
<td>39</td>
<td>39</td>
<td>34</td>
<td>516</td>
<td>145</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Coahuila</td>
<td>158</td>
<td>156</td>
<td>145</td>
<td>2 241</td>
<td>1 515</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Colima</td>
<td>42</td>
<td>42</td>
<td>38</td>
<td>554</td>
<td>264</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chiapas</td>
<td>105</td>
<td>105</td>
<td>88</td>
<td>1 012</td>
<td>357</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chihuahua</td>
<td>188</td>
<td>173</td>
<td>153</td>
<td>3 429</td>
<td>1 052</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>1 136</td>
<td>1 136</td>
<td>1 120</td>
<td>20 160</td>
<td>9 762</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Durango</td>
<td>69</td>
<td>69</td>
<td>81</td>
<td>1 082</td>
<td>355</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Guanajuato</td>
<td>300</td>
<td>294</td>
<td>272</td>
<td>5 613</td>
<td>2 104</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Guerrero</td>
<td>107</td>
<td>96</td>
<td>83</td>
<td>1 153</td>
<td>288</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hidalgo</td>
<td>178</td>
<td>178</td>
<td>167</td>
<td>2 351</td>
<td>711</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Jalisco</td>
<td>507</td>
<td>507</td>
<td>417</td>
<td>8 711</td>
<td>3 235</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>México</td>
<td>973</td>
<td>973</td>
<td>899</td>
<td>14 451</td>
<td>5 152</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Michoacán</td>
<td>318</td>
<td>302</td>
<td>202</td>
<td>3 250</td>
<td>756</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Morelos</td>
<td>188</td>
<td>186</td>
<td>159</td>
<td>2 226</td>
<td>622</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nayarit</td>
<td>41</td>
<td>40</td>
<td>31</td>
<td>544</td>
<td>314</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nuevo León</td>
<td>235</td>
<td>235</td>
<td>226</td>
<td>7 583</td>
<td>4 027</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Oaxaca</td>
<td>93</td>
<td>93</td>
<td>86</td>
<td>944</td>
<td>269</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Puebla</td>
<td>432</td>
<td>432</td>
<td>300</td>
<td>4 190</td>
<td>1 461</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Querétaro</td>
<td>147</td>
<td>147</td>
<td>144</td>
<td>2 890</td>
<td>1 029</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>1 035</td>
<td>102</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>150</td>
<td>150</td>
<td>130</td>
<td>2 433</td>
<td>616</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sinaloa</td>
<td>121</td>
<td>121</td>
<td>118</td>
<td>2 372</td>
<td>1 955</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sonora</td>
<td>182</td>
<td>182</td>
<td>168</td>
<td>3 008</td>
<td>1 408</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>164</td>
<td>164</td>
<td>152</td>
<td>3 213</td>
<td>1 343</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>97</td>
<td>97</td>
<td>74</td>
<td>734</td>
<td>132</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Veracruz</td>
<td>229</td>
<td>225</td>
<td>234</td>
<td>3 441</td>
<td>885</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Yucatán</td>
<td>125</td>
<td>125</td>
<td>123</td>
<td>1 327</td>
<td>854</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Zacatecas</td>
<td>54</td>
<td>63</td>
<td>57</td>
<td>897</td>
<td>250</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL NACIONAL: 6 956 6 893 6 034 102 904 41 742 108 3 262

Incluye la información de escuelas censadas en 2004-2005, así como la información de 2003-2004 de las escuelas que no informaron en el presente ciclo escolar y sí fueron censadas en el ciclo escolar anterior.
De acuerdo a la tabla 7, el Distrito Federal, tiene mayor número de escuelas primarias de sector privado, pues de 6 956 escuelas primarias privadas, el D.F cuenta con 1 136, lo cual indica que el 16.33% de este tipo de escuelas se encuentran en el D.F.

Todas las escuelas fueron censadas (100%), 1 120 escuelas cuentan con computadoras (98.59%), las cuales representan un total de 20 160 equipos de cómputo, de los cuales 8 758 cuentan con servicio de Internet (43.44%), 19 escuelas tienen red edusat (1.67%) y 750 cuentan con videoteca (66.02%).
1.6.2 Cifras totales de tipo de equipamiento tecnológico de escuelas secundarias por estados.

La siguiente tabla muestra el total de las escuelas de nivel secundaria (incluyendo sector público y particular) con que cuenta el país de México.

TABLA 8. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS TOTALES DE SECUNDARIAS

<table>
<thead>
<tr>
<th>ENTIDAD FEDERATIVA</th>
<th>EXISTENTES</th>
<th>CENSADAS</th>
<th>COMPUTADORAS</th>
<th>TOTAL DE COMPUTADORAS</th>
<th>INTERNET</th>
<th>RED EDUSAT</th>
<th>VIDEOTECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguascalientes</td>
<td>316</td>
<td>316</td>
<td>288</td>
<td>5 030</td>
<td>1 223</td>
<td>232</td>
<td>125</td>
</tr>
<tr>
<td>Baja California</td>
<td>494</td>
<td>487</td>
<td>440</td>
<td>11 731</td>
<td>4 563</td>
<td>257</td>
<td>233</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>120</td>
<td>120</td>
<td>126</td>
<td>2 277</td>
<td>1 165</td>
<td>08</td>
<td>84</td>
</tr>
<tr>
<td>Campeche</td>
<td>251</td>
<td>251</td>
<td>158</td>
<td>1 685</td>
<td>459</td>
<td>157</td>
<td>103</td>
</tr>
<tr>
<td>Coahuila</td>
<td>481</td>
<td>486</td>
<td>454</td>
<td>9 652</td>
<td>3 062</td>
<td>311</td>
<td>311</td>
</tr>
<tr>
<td>Colima</td>
<td>113</td>
<td>113</td>
<td>146</td>
<td>2 666</td>
<td>1 444</td>
<td>114</td>
<td>83</td>
</tr>
<tr>
<td>Chiapas</td>
<td>1 598</td>
<td>1 533</td>
<td>1 071</td>
<td>7 530</td>
<td>1 546</td>
<td>881</td>
<td>510</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>991</td>
<td>1 086</td>
<td>574</td>
<td>12 524</td>
<td>4 280</td>
<td>442</td>
<td>293</td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>1 272</td>
<td>1 372</td>
<td>1 340</td>
<td>42 160</td>
<td>18 021</td>
<td>600</td>
<td>981</td>
</tr>
<tr>
<td>Durango</td>
<td>787</td>
<td>787</td>
<td>703</td>
<td>6 313</td>
<td>1 557</td>
<td>667</td>
<td>195</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>1 477</td>
<td>1 416</td>
<td>1 350</td>
<td>18 167</td>
<td>4 237</td>
<td>1 148</td>
<td>649</td>
</tr>
<tr>
<td>Guerrero</td>
<td>1 200</td>
<td>1 162</td>
<td>106</td>
<td>7 521</td>
<td>1 723</td>
<td>823</td>
<td>493</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>1 093</td>
<td>1 093</td>
<td>1 032</td>
<td>9 861</td>
<td>1 973</td>
<td>924</td>
<td>615</td>
</tr>
<tr>
<td>Jalisco</td>
<td>1 691</td>
<td>1 611</td>
<td>1 302</td>
<td>31 914</td>
<td>6 580</td>
<td>1 041</td>
<td>733</td>
</tr>
<tr>
<td>México</td>
<td>2 360</td>
<td>2 368</td>
<td>2 850</td>
<td>48 966</td>
<td>9 488</td>
<td>1 827</td>
<td>1 835</td>
</tr>
<tr>
<td>Michoacán</td>
<td>1 236</td>
<td>1 186</td>
<td>1 106</td>
<td>10 263</td>
<td>1 046</td>
<td>877</td>
<td>505</td>
</tr>
<tr>
<td>Morelos</td>
<td>401</td>
<td>401</td>
<td>307</td>
<td>6 533</td>
<td>2 435</td>
<td>259</td>
<td>221</td>
</tr>
<tr>
<td>Nayarit</td>
<td>169</td>
<td>169</td>
<td>282</td>
<td>3 269</td>
<td>282</td>
<td>171</td>
<td>153</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>902</td>
<td>760</td>
<td>706</td>
<td>17 067</td>
<td>5 512</td>
<td>419</td>
<td>528</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>1 002</td>
<td>1 008</td>
<td>1 457</td>
<td>16 156</td>
<td>3 131</td>
<td>1 572</td>
<td>403</td>
</tr>
<tr>
<td>Puebla</td>
<td>1 074</td>
<td>1 071</td>
<td>1 036</td>
<td>18 209</td>
<td>6 043</td>
<td>1 384</td>
<td>710</td>
</tr>
<tr>
<td>Queretaro</td>
<td>440</td>
<td>440</td>
<td>416</td>
<td>7 000</td>
<td>1 830</td>
<td>319</td>
<td>188</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>285</td>
<td>285</td>
<td>271</td>
<td>3 715</td>
<td>1 206</td>
<td>128</td>
<td>98</td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>1 492</td>
<td>1 482</td>
<td>1 252</td>
<td>10 071</td>
<td>1 771</td>
<td>1 292</td>
<td>963</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>777</td>
<td>772</td>
<td>576</td>
<td>6 062</td>
<td>2 003</td>
<td>523</td>
<td>374</td>
</tr>
<tr>
<td>Sonora</td>
<td>925</td>
<td>918</td>
<td>600</td>
<td>10 799</td>
<td>3 940</td>
<td>458</td>
<td>291</td>
</tr>
<tr>
<td>Tabasco</td>
<td>684</td>
<td>667</td>
<td>623</td>
<td>6 764</td>
<td>1 001</td>
<td>450</td>
<td>241</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>653</td>
<td>546</td>
<td>516</td>
<td>13 213</td>
<td>7 230</td>
<td>471</td>
<td>305</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>315</td>
<td>315</td>
<td>263</td>
<td>5 159</td>
<td>781</td>
<td>224</td>
<td>149</td>
</tr>
<tr>
<td>Veracruz</td>
<td>2 683</td>
<td>2 670</td>
<td>1 801</td>
<td>13 821</td>
<td>3 563</td>
<td>1 789</td>
<td>940</td>
</tr>
<tr>
<td>Yucatán</td>
<td>506</td>
<td>506</td>
<td>452</td>
<td>6 375</td>
<td>1 444</td>
<td>298</td>
<td>197</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>1 109</td>
<td>1 047</td>
<td>926</td>
<td>7 300</td>
<td>1 532</td>
<td>868</td>
<td>177</td>
</tr>
</tbody>
</table>

TOTAL NACIONAL | 31 206 | 30 163 | 26 261 | 382 090 | 106 223 | 21 233 | 13 856

Incluye la información de escuelas censadas en 2004-2005, así como la información de 2003-2004 de las escuelas que no informaron en el presente ciclo escolar y que fueron censadas en el ciclo escolar anterior.
En cifras generales y de acuerdo al censo realizado para el ciclo 2004-2005, se tiene que en el país de México, existen 31 208 escuelas secundarias; de las cuales, 30 193 fueron censadas (96.74%). Se calculó que 26 251 escuelas cuentan con computadoras; es decir el 86.94%, las cuales representan un total de 382 090 equipos de cómputo, de estos, 108 223 (28.32%) tienen Internet, el 70.32% de las escuelas tienen red edusat (21 233) y con videoteca existe el 45.26% (13 668). Esto a nivel nacional.

1.6.2.1 Tipo de equipamiento tecnológico de escuelas secundarias por estado. Sector público.

En cuanto al sector público de las escuelas secundarias, se tiene que de un total de 31 208 escuelas secundarias; 27 614 son públicas, lo cual corresponde al 88.48%.

De acuerdo a la tabla 9, el estado de México, es uno de los estados con más escuelas secundarias de sector público. Pues de 27 614 escuelas secundarias públicas, México cuenta con 2 868, lo cual indica que el 10.38% de este tipo de escuelas se encuentran en este estado.

Casi el 100% (99.58%), es decir 2 856 escuelas fueron censadas, de las cuales, 2 446 escuelas cuentan con computadoras (85.64%), que representan un total de 37 381 equipos de cómputo, de estos 4 071 cuentan con servicio de Internet (10.89%), 1 814 planteles tienen red edusat (63.51%) y 1 583 cuentan con videoteca (55.42%).

En comparación con el estado de Baja California Sur, que es uno de los estados que menor número de escuelas secundarias sector público tiene, pues de 27 614 escuelas de este tipo, sólo 113 existen en Baja California Sur (.40%). De esas 113 escuelas, se censaron todas (100%) de donde se obtuvieron los siguientes datos: 109 escuelas cuentan con computadoras, es decir, 96.46%, que representan 1
807 equipos de cómputo, de estos 874 (48.36%) cuentan con Internet, 96 cuentan con red edusat (84.95%) y con videoteca existen 75; es decir 66.37%.

TABLA 9. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PÚBLICO, SECundarias

<table>
<thead>
<tr>
<th>ENTIDAD FEDERATIVA</th>
<th>EXISTENTES</th>
<th>CENSADAS</th>
<th>COMPUTADORAS</th>
<th>TOTAL DE COMPUTADORAS</th>
<th>INTERNET</th>
<th>RED EDSAT</th>
<th>VIDEOTECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguascalientes</td>
<td>275</td>
<td>275</td>
<td>249</td>
<td>4,785</td>
<td>032</td>
<td>231</td>
<td>98</td>
</tr>
<tr>
<td>Baja California</td>
<td>260</td>
<td>260</td>
<td>255</td>
<td>5,480</td>
<td>041</td>
<td>253</td>
<td>161</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>113</td>
<td>113</td>
<td>109</td>
<td>1,807</td>
<td>074</td>
<td>05</td>
<td>76</td>
</tr>
<tr>
<td>Campeche</td>
<td>216</td>
<td>216</td>
<td>125</td>
<td>1,383</td>
<td>185</td>
<td>157</td>
<td>93</td>
</tr>
<tr>
<td>Coahuila</td>
<td>375</td>
<td>375</td>
<td>352</td>
<td>6,980</td>
<td>1,039</td>
<td>302</td>
<td>257</td>
</tr>
<tr>
<td>Colima</td>
<td>132</td>
<td>132</td>
<td>129</td>
<td>2,444</td>
<td>1,234</td>
<td>113</td>
<td>55</td>
</tr>
<tr>
<td>Chiapas</td>
<td>1,821</td>
<td>1,821</td>
<td>1,017</td>
<td>6,385</td>
<td>1,140</td>
<td>870</td>
<td>482</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>588</td>
<td>588</td>
<td>492</td>
<td>9,934</td>
<td>3,027</td>
<td>454</td>
<td>251</td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>914</td>
<td>914</td>
<td>903</td>
<td>17,945</td>
<td>10,086</td>
<td>683</td>
<td>652</td>
</tr>
<tr>
<td>Durango</td>
<td>743</td>
<td>743</td>
<td>710</td>
<td>5,289</td>
<td>1,149</td>
<td>693</td>
<td>173</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>1,297</td>
<td>1,297</td>
<td>1,172</td>
<td>12,604</td>
<td>1,851</td>
<td>1,134</td>
<td>557</td>
</tr>
<tr>
<td>Guerrero</td>
<td>1,102</td>
<td>1,102</td>
<td>899</td>
<td>6,159</td>
<td>1,425</td>
<td>820</td>
<td>437</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>1,004</td>
<td>1,004</td>
<td>943</td>
<td>8,047</td>
<td>1,415</td>
<td>618</td>
<td>502</td>
</tr>
<tr>
<td>Jalisco</td>
<td>1,355</td>
<td>1,355</td>
<td>1,160</td>
<td>23,843</td>
<td>3,133</td>
<td>1,024</td>
<td>626</td>
</tr>
<tr>
<td>México</td>
<td>2,868</td>
<td>2,868</td>
<td>2,448</td>
<td>37,381</td>
<td>4,071</td>
<td>1,814</td>
<td>1,683</td>
</tr>
<tr>
<td>Michoacán</td>
<td>1,168</td>
<td>1,168</td>
<td>998</td>
<td>7,415</td>
<td>837</td>
<td>671</td>
<td>444</td>
</tr>
<tr>
<td>Morelos</td>
<td>324</td>
<td>324</td>
<td>270</td>
<td>4,207</td>
<td>1,230</td>
<td>255</td>
<td>174</td>
</tr>
<tr>
<td>Nayarit</td>
<td>468</td>
<td>468</td>
<td>358</td>
<td>2,841</td>
<td>236</td>
<td>189</td>
<td>160</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>648</td>
<td>648</td>
<td>614</td>
<td>11,530</td>
<td>2,034</td>
<td>413</td>
<td>444</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>1,753</td>
<td>1,753</td>
<td>1,423</td>
<td>15,420</td>
<td>2,687</td>
<td>1,571</td>
<td>384</td>
</tr>
<tr>
<td>Puebla</td>
<td>1,731</td>
<td>1,731</td>
<td>1,607</td>
<td>15,480</td>
<td>3,115</td>
<td>1,373</td>
<td>608</td>
</tr>
<tr>
<td>Querétaro</td>
<td>350</td>
<td>350</td>
<td>338</td>
<td>5,600</td>
<td>892</td>
<td>316</td>
<td>130</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>240</td>
<td>240</td>
<td>228</td>
<td>2,752</td>
<td>619</td>
<td>165</td>
<td>93</td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>355</td>
<td>355</td>
<td>1,104</td>
<td>7,727</td>
<td>950</td>
<td>2,200</td>
<td>612</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>600</td>
<td>600</td>
<td>450</td>
<td>4,702</td>
<td>1,721</td>
<td>610</td>
<td>318</td>
</tr>
<tr>
<td>Sonora</td>
<td>539</td>
<td>539</td>
<td>518</td>
<td>8,817</td>
<td>3,793</td>
<td>451</td>
<td>360</td>
</tr>
<tr>
<td>Tabasco</td>
<td>612</td>
<td>612</td>
<td>573</td>
<td>4,503</td>
<td>555</td>
<td>478</td>
<td>218</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>557</td>
<td>557</td>
<td>422</td>
<td>9,723</td>
<td>5,259</td>
<td>405</td>
<td>242</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>273</td>
<td>273</td>
<td>251</td>
<td>4,407</td>
<td>513</td>
<td>223</td>
<td>128</td>
</tr>
<tr>
<td>Veracruz</td>
<td>2,359</td>
<td>2,359</td>
<td>1,418</td>
<td>9,889</td>
<td>1,831</td>
<td>1,779</td>
<td>883</td>
</tr>
<tr>
<td>Yucatán</td>
<td>439</td>
<td>439</td>
<td>388</td>
<td>4,944</td>
<td>690</td>
<td>293</td>
<td>175</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>1,074</td>
<td>1,074</td>
<td>894</td>
<td>6,570</td>
<td>1,377</td>
<td>685</td>
<td>164</td>
</tr>
</tbody>
</table>

TOTAL NACIONAL | **27,814** | **28,631** | **22,628** | **298,851** | **62,014** | **21,070** | **11,777**

a Incluye la información de escuelas censadas en 2004-2005, así como la información de 2005-2006 de las escuelas que no informaron en el presente ciclo escolar y sí fueron censadas en el ciclo escolar anterior.
1.6.2.2 Tipo de equipamiento tecnológico de escuelas secundarias por estado. Sector privado.

En cuanto al sector privado de las escuelas secundarias, se tiene que de un total de 31 208 escuelas secundarias; 3 594 son privadas, lo cual corresponde al 11.51%.

De nuevo, el Distrito Federal, tiene mayor número de escuelas secundarias de sector privado, pues de 3 594 escuelas secundarias privadas, el D.F cuenta con 458, lo cual indica que el 12.74% de este tipo de escuelas se encuentran en el D.F.

Todas las escuelas del D.F. fueron censadas (100%), 443 escuelas cuentan con computadoras (96.72%), las cuales representan un total de 14 632 equipos de cómputo, de estos 8 253 cuentan con servicio de Internet (56.40%), 15 tienen red edusat (3.27%) y 272 cuentan con videoteca (59.38%).

Haciendo una comparación con el estado de Aguascalientes en donde menos escuelas secundarias sector privado existen, pues de 31 208 escuelas secundarias, este estado cuenta con apenas 41 de este tipo, es decir el .13%. Al igual que en el D.F., el censo fue de un 100% y se encontró que, 39 escuelas que representan el 95.12% tienen computadoras, lo que en su totalidad representan 1073 equipos de cómputo. De éstos, un poco más de la mitad, 591 computadoras cuentan con el servicio de Internet (55.07%). Con red edusat sólo 1 plantel existe y con videoteca existen 27 escuelas. Es fácil percatarse de la desigualdad de equipamiento tecnológico en los estados de nuestro país, son notorias las contrastantes cifras entre un estado con mayor equipamiento y uno de escaso equipamiento.

Esto lo podemos apreciar en la tabla 10.
TABLA 10. RECURSOS TECNOLÓGICOS, PERIODO 2004-2005. CIFRAS DE SECTOR PRIVADO, SECUNDARIAS

<table>
<thead>
<tr>
<th>ENTIDAD FEDERATIVA</th>
<th>EXISTENTES</th>
<th>CENSADAS</th>
<th>COMPUTADORAS</th>
<th>TOTAL DE COMPUTADORAS</th>
<th>INTERNET</th>
<th>RED EDUCAT</th>
<th>VIDEOTECA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguascalientes</td>
<td>41</td>
<td>41</td>
<td>36</td>
<td>1,073</td>
<td>596</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Baja California</td>
<td>106</td>
<td>105</td>
<td>104</td>
<td>3,985</td>
<td>0</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>472</td>
<td>281</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Campeche</td>
<td>35</td>
<td>35</td>
<td>33</td>
<td>922</td>
<td>273</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Coahuila</td>
<td>106</td>
<td>105</td>
<td>102</td>
<td>3,769</td>
<td>2,159</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>Colima</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>512</td>
<td>210</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>67</td>
<td>57</td>
<td>54</td>
<td>1,195</td>
<td>505</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>83</td>
<td>63</td>
<td>52</td>
<td>2,690</td>
<td>1,250</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>Distrito Federal</td>
<td>456</td>
<td>456</td>
<td>443</td>
<td>14,832</td>
<td>8,253</td>
<td>15</td>
<td>272</td>
</tr>
<tr>
<td>Durango</td>
<td>44</td>
<td>44</td>
<td>43</td>
<td>914</td>
<td>406</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>190</td>
<td>160</td>
<td>176</td>
<td>5,473</td>
<td>2,080</td>
<td>12</td>
<td>92</td>
</tr>
<tr>
<td>Guanajuato</td>
<td>87</td>
<td>60</td>
<td>56</td>
<td>1,862</td>
<td>707</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>1,234</td>
<td>560</td>
<td>6</td>
<td>53</td>
</tr>
<tr>
<td>Jalisco</td>
<td>250</td>
<td>250</td>
<td>242</td>
<td>7,071</td>
<td>3,044</td>
<td>7</td>
<td>127</td>
</tr>
<tr>
<td>México</td>
<td>412</td>
<td>412</td>
<td>404</td>
<td>11,314</td>
<td>6,417</td>
<td>13</td>
<td>252</td>
</tr>
<tr>
<td>Michoacán</td>
<td>130</td>
<td>127</td>
<td>117</td>
<td>2,568</td>
<td>811</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>Morelos</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>2,141</td>
<td>1,199</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>Nayarit</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>425</td>
<td>100</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>164</td>
<td>164</td>
<td>152</td>
<td>6,129</td>
<td>3,308</td>
<td>6</td>
<td>82</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>55</td>
<td>53</td>
<td>44</td>
<td>726</td>
<td>244</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Puebla</td>
<td>240</td>
<td>240</td>
<td>226</td>
<td>4,570</td>
<td>1,926</td>
<td>0</td>
<td>114</td>
</tr>
<tr>
<td>Querétaro</td>
<td>83</td>
<td>50</td>
<td>50</td>
<td>2,210</td>
<td>1,158</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>963</td>
<td>480</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>102</td>
<td>102</td>
<td>98</td>
<td>2,344</td>
<td>821</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>Sinaloa</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>2,167</td>
<td>1,202</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>Sonora</td>
<td>87</td>
<td>85</td>
<td>82</td>
<td>2,182</td>
<td>1,137</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Tabasco</td>
<td>52</td>
<td>52</td>
<td>50</td>
<td>1,261</td>
<td>444</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Tamaulipas</td>
<td>90</td>
<td>90</td>
<td>94</td>
<td>3,460</td>
<td>1,971</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>Tlaxcala</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>755</td>
<td>268</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Veracruz</td>
<td>244</td>
<td>201</td>
<td>193</td>
<td>3,082</td>
<td>1,722</td>
<td>7</td>
<td>95</td>
</tr>
<tr>
<td>Yucatán</td>
<td>67</td>
<td>67</td>
<td>64</td>
<td>1,231</td>
<td>559</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Zacatecas</td>
<td>35</td>
<td>33</td>
<td>31</td>
<td>724</td>
<td>175</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL NACIONAL 3,564 3,562 3,426 98,436 48,304 154 1,891

Incluye la información de escuelas censadas en 2004-2005, así como la información de 2003-2004 de las escuelas que no informaron en el presente ciclo escolar y sí fueron censadas en el ciclo escolar anterior.
CAPÍTULO II
LAS NTIC Y LA EDUCACIÓN
2.1 Revolución científico-técnica.

La revolución científico-técnica fue un fenómeno que impactó en todos los ámbitos de nuestra sociedad y que impulsó el desarrollo e invención de las Nuevas Tecnologías de Información y Comunicación (NTIC); cuyas primeras “versiones” son la base del mundo tecnológico que hoy habitamos.

Es por ello la importancia de mencionar a la revolución científico-técnica antes de comenzar a abordar a las NTIC, pues como menciona el autor Leonel Corona, “…la revolución científico-técnica aunque es un cambio radical en las relaciones de la ciencia con la técnica y la producción, su impacto también se deja ver en la economía, la sociedad, la política y en general al conjunto de actividades humanas. Esta revolución es producto de la acumulación de conocimientos técnicos, tecnológicos y científicos, que se aceleraron de sobremanera en el periodo de las guerras mundiales” (Corona, 1991).

Efectivamente, una de las expresiones contemporáneas del avance del conocimiento, es lo que denominamos hoy en día las nuevas tecnologías, la informática, la biotecnología, las telecomunicaciones, las fuentes y tecnologías energéticas y los nuevos materiales que surgen día a día; todos estos forman parte de la revolución científico-técnica.
Revolución Científica-técnica: Antecedentes y evolución.

La revolución científica tecnológica o científica-técnica, es producto de igual forma de varias revoluciones:

- Científica
- Técnica
- Desarrollo económico
- Del trabajo
- De la investigación y el arte
- De la educación
- Sistemas de dirección y organización
- Ecología
- Social

La nueva sociedad esperada, abarca un amplio abanico que va desde considerar que los cambios nos llevarían a:

- Una sociedad industrial modificada
- La tercera revolución industrial
- La sociedad pos-industrial, en la que prevalecería una sociedad de servicios o terciaria.

La revolución científica técnica comprende el espacio que va desde la revolución industrial a la automatización integral. Su punto de partida es la revolución industrial, la cual se basa en el principio mecánico (máquina-herramienta) y en la descomposición del trabajo en áreas. Es importante citar esto, ya que la revolución científica técnica (RCT) trataba de cambiar el trabajo directo, o la realización del
trabajo a través de la división de este en tareas, por dispositivos electrónicos que automatizarían el proceso de trabajo, entonces la RCT impulsaría con gran fuerza el avance tecnológico, debido a que el obrero sería separado del proceso productivo directo, para ser sustituido por la automatización.

Bajo el advenimiento de la automatización, la RCT, comprende un conjunto de procesos que deben tener distintos contenidos tecnológicos:

• Cibernetización, que implica la retroalimentación de información mediante centros de control manejados por computadora.

• La quimiquización, donde la propia materia prima es transformada de manera continua a partir del dominio de sus propias leyes.

• Los procesos biotecnológicos, los cuales implican la utilización de microorganismos para la transformación de las materias, y por ello se asemejan a los procesos automáticos.

• Los procesos energéticos, que constituyen sistemas que se basan en procesos automáticos para la generación, transmisión y distribución de energía eléctrica, con base en ampliar la diversificación de fuentes, con perspectivas de utilizar más las fuentes renovables.

Todos esos cambios que traía consigo la RCT, tenían como base la característica de que la ciencia precede a la tecnología y ésta a la producción.

El cambio cualitativo de la RCT está en el nuevo papel del sector de conocimientos. Se asume que las formas de concentración de poder mundial dependerán en buena medida del grado de internacionalización de dicho sector en las economías nacionales. Y es aquí donde empieza la importancia de plantear lineamientos para el desarrollo tecnológico a partir de las nuevas tecnologías, esto, con el fin de integrarlas a las políticas científicas, tecnológicas, agrícolas, industriales, financieras y comerciales; como parte de una estrategia integral de desarrollo.
Un preámbulo a las nuevas tecnologías.

Las nuevas tecnologías, son el resultado de la aplicación del conocimiento que empezaba a emerger con la RCT, y que como era de esperarse, tuvieron y tienen un impacto social y productivo amplio.

No existe una clara división para las nuevas tecnologías y el concepto que las define es el grado relativo de intensidad en el contenido de conocimientos científicos, y es aquí, en el uso de conocimientos científicos, en donde se puede marcar una diferencia entre las nuevas tecnologías y las tecnologías convencionales. Las nuevas tecnologías están estrechamente relacionadas con la investigación científica, la cual dinamiza los procesos generadores de conocimiento, y alimentan las innovaciones y difusión de tecnologías.

La innovación es la primera vez que un invento es explotado comercialmente; sin embargo, el factor que tiene más importancia en la innovación es la rapidez con la que se difunde en otras empresas o en el caso de productos su grado de penetración en los mercados. La aceleración de las innovaciones y su difusión (resultado de la mayor interrelación entre las ciencias y las tecnologías) hace que la obsolescencia técnica sea antes que la económica y la física.

De acuerdo al autor Pérez C (1986), las innovaciones tecnológicas se pueden jerarquizar de acuerdo a los impactos de su difusión, de la siguiente manera:

Las innovaciones incrementales son las mejoras sucesivas a las que son sometidos los productos y procesos para elevar la calidad, reducir costos o ampliar sus usos. La difusión de las innovaciones incrementales al acumularse pasan de un nivel de rendimiento creciente a uno decreciente, que llevan a alcanzar la saturación, momento en que se corresponde con la tecnología madura.

Innovación radical, se refiere a la introducción de un proceso o producto verdaderamente nuevo. Este tipo de innovaciones forman parte de un conjunto de innovaciones interrelacionadas lo que permite distinguir los sistemas tecnológicos.
Los sistemas tecnológicos son un conjunto de innovaciones interrelacionadas que impactan varias ramas del aparato productivo, encadenando varias innovaciones radicales.

Las revoluciones tecnológicas afectan todo el aparato productivo. Se presenta la difusión de la microelectrónica. El concepto de revolución afecta de manera irreversible los costos de los componentes en la medida que introduce un cambio cualitativo en los procesos de trabajo.

Esta jerarquización permite identificar a las nuevas tecnologías con las innovaciones radicales, o bien con los sistemas tecnológicos, por ejemplo. Las nuevas tecnologías forman parte en un conjunto de la revolución científico-técnica, esto porque fundamentan su origen en las bases científicas y que tienden a construir una familia de tecnologías por el aumento de sus interrelaciones; es decir, que el desarrollo de una afecta el desarrollo de otra.

Como podemos ver, la revolución científico-técnica surge del cambio en las relaciones entre la ciencia, la técnica y la tecnología, e impacta todos los aspectos de nuestra vida. Las nuevas tecnologías representan aplicable de frontera de esta revolución, por lo que; exigen que las capacidades científicas se desarrollen cada vez más al igual que las actividades auxiliares de información, normas y mercadeo entre otras necesarias para los procesos de innovación y difusión. Con esto, podemos darnos cuenta, que, si es verdad que los inventos tecnológicos revolucionarían necesariamente, la revolución Científico-Tecnológica tuvo mucho que ver en el desarrollo y evolución de éstos, siendo la base ideológica de lo que hoy podemos llamar nuevas tecnologías.
2.2 La tecnología y su evolución.

Las tecnologías de la información y la comunicación han desempeñado un papel fundamental en la formación de nuestra sociedad y nuestra cultura. Es invaluable para la historia de la humanidad los inventos y descubrimientos, bases del mundo en el que vivimos; tales como la escritura, la imprenta, el teléfono, la radio, el cine, la TV… Es casi imposible o, peor aún, es aterrante el sólo imaginar cómo sería nuestra forma de vivir si no hubiera aparecido y evolucionado la tecnología, pero nunca nos pondremos a pensar en ello, puesto que hemos vivido tan apegados a ellas que las que hemos utilizado habitualmente o desde la infancia, están tan integradas en nuestras vidas, que se han vuelto parte de nuestra naturaleza. Por tal motivo, solo percibimos la tecnología cuando ésta falla o desaparece; por ejemplo, recordemos qué pasa cuando ocurre un corte de suministro eléctrico o simplemente la cantidad de información que dejaríamos de recibir si no existieran medios de comunicación como la radio o la tv. Es por ello, que ni siquiera nos hemos percatado de cómo la tecnología ha contribuido a cambiar nuestro entorno.

De acuerdo a Tezanos (2001), “son tres las revoluciones más importantes que han marcado la historia de la humanidad: la francesa, la industrial y la tecnológica o de la información; cada una, por supuesto, con sus características distintivas que las diferencian de las demás”. Sin embargo, en ninguna de estas revoluciones, a excepción de la tecnológica, se marcan considerablemente cambios tan apresurados; hay que reconocer que nunca las tecnologías se han multiplicado tanto como sucede actualmente, de manera que nos encontramos ya no sólo con las que podemos denominar “tradicionales”, sino también con las llamadas Nuevas Tecnologías, de donde las referidas a la información y a la comunicación principalmente han tenido participación determinante para la conformación y concreción del nuevo modelo de sociedad que emerge; la de la información o del conocimiento.

Se hace notable, por lo tanto, una de las características más distintivas de nuestra sociedad; que es la de girar en torno a las tecnologías de información y
comunicación, presentándonos como problema, la velocidad con que se están desarrollando y transformando.

Esta velocidad de transformación y adaptación acelerada de la sociedad hacia las tecnologías trae como consecuencia el poco análisis y nula reflexión sobre las verdaderas posibilidades de adoptarlas, las limitaciones que traerán consigo y los impactos que tendrían en los distintos ámbitos en que se desarrolla el ser humano; en especial en el sistema educativo.

Posiblemente la rapidez y urgencia que tenemos en convertir a nuestra sociedad a una tecnológica, se debe a la influencia de otras. Por ejemplo, la perspectiva de la Unión Europea, es que aquellas naciones y colectividades que no incorporen las tecnologías a los sectores industriales, productivos, culturales, económicos, etc. Se verán marginados de las posibilidades que estas ofrecen y perderán la posibilidad de situarse en un modelo social de desarrollo económico:

“... en el futuro, el rendimiento económico y social de las sociedades vendrá determinado cada vez más por la manera en que los ciudadanos y las fuerzas económicas y sociales puedan explotar las potencialidades de estas nuevas tecnologías, integrarlas lo mejor posible en la economía y favorecer el desarrollo de una sociedad basada en el conocimiento” (Comisión de las Comunidades Europeas, 2000).

Vivimos el fenómeno de las Nuevas Tecnologías de Información y Comunicación y son evidentes las ideologías y prisas que hemos adoptado para incorporar a nuestra sociedad las tecnologías tan pronto aparezcan, sin embargo, la comodidad que representan hoy en día las NTIC evita que recordemos cómo eran las tecnologías “tradicionales”; aquellas que sufrieron transformaciones con el paso del tiempo y que dieron paso a las nuevas tecnologías.

Por lo tanto, es interesante conocer cuáles fueron los inventos que marcaron el nacimiento de éstas tecnologías; inventos que transformaron a nuestra sociedad y nos ofrecen la forma de vida que hoy conocemos.
2.3 Breve cronología de la tecnología moderna.

A continuación se presenta una breve cronología de los inventos más significativos de la tecnología que marcaron nuestra historia, tomado de la página Web de Discovery Communications (www.tudiscovery.com).

1705 - Primera máquina de vapor efectiva (Thomas Newcomen).

1768 - Nicholas Joseph Cugnot construye un vagón a vapor autopropulsado.

1769 - James Watt mejora significativamente la máquina a vapor de Newcomen

1774 - Primera calculadora fabricada en serie (Philipp Matthäus Hahn)

1775 - Primer submarino (David Bushnell)

1780 - Invención de la prensa de copia (James Watt)

1785 - Se inventa el telar mecánico (Edmund Cartwright)

1793 - Telégrafo (Claude Chappe)

1800 - Primera batería (Alessandro Volta)

1804 - Primera locomotora a vapor (Richard Trevithick)

1810 - Prensa de impresión (Frederick Koenig)

1821 - Motor eléctrico (Michael Faraday)

1825 - Primera línea pública de ferrocarril en Inglaterra

1827 - Primera turbina de agua, y patente del primer propulsor para barcos (Josef Ressel)

1854 - Invención de la bombilla incandescente (Heinrich Göbel)

1859 - Se desarrolla el motor a gas (Etienne Lenoir)

1861 - Primer teléfono funcionando (Johann Philipp Reis)
1875 - Invención del refrigerador (Carl von Linde)

1876 - Se patenta el uso del teléfono (Alexander Graham Bell)
 - Motor de cuatro tiempos (Nicolaus August Otto)

1877 - Invención del fonógrafo (Thomas Alva Edison)

1879 - Primera locomotora eléctrica (Werner von Siemens)

1881 - Abastecimiento de energía con corriente alterna de alta frecuencia (George Westinghouse)

1883 - Desarrollo de la turbina a vapor (Carl de Laval)

1886 - Primer automóvil (Karl Benz)

1895 - Descubrimiento de los rayos X (Wilhelm Conrad Röntgen)
 - Invención del cinematógrafo (Auguste y Louis Jean Lumière)

1896 - Descubrimiento de la radioactividad (Antoine Henri Becquerel)

1897 - Invención del tubo de rayos catódicos (Karl Ferdinand Braun)
 - Diesel construye el motor diesel

1903 - Primer vuelo impulsado exitoso (Orville y Wilbur Wright)

1913 - Línea de ensamble para la producción automovilística (Henry Ford)

1930 - Primera turbina a gas para aeroplanos

1931 - Primer microscopio electrónico (Ernst Ruska)

1938 - Se divide el átomo del uranio (Otto Hahn y Fritz Straßmann)

1941 - "Z3", la primera computadora funcionando (Konrad Zuse)

1948 - Transistor (William B. Shockley, John Bardeen y Walter Brattain)
1954 - Primera central nuclear en Obninsk, cercana a Moscú

1955 - Fibra óptica (Narinder Singh Kapany, London)

1957 - Se lanza el primer satélite terrestre "Sputnik 1" (URSS)

1961 - Primer humano en el espacio y primera orbitación terrestre (Yuri Gagarin, URSS)

1964 - Circuitos integrados (Jack Kilby para Texas Instruments)

1969 - Primer descenso del hombre en la luna ("Apollo 11", USA)

1970 - Desarrollo del microprocesador (Intel)

- Primera calculadora de bolsillo

1977 - Apple II, la primera computadora compacta

1979 - Disco compacto (CD) para almacenamiento digital de audio (Sony y Philips)

1981 - Primera computadora personal de IBM

1992 - Primer libro en CD-ROM (la Biblia)

1993 - Advenimiento del “Ancho mundo de la Internet” (World Wide Web)

2.4 Las Nuevas Tecnologías de Información y Comunicación: conceptos.

Antes de mostrar algunas definiciones del término Nuevas Tecnologías de Información y Comunicación, es pertinente resaltar los conceptos particulares que se involucran en este, enfocándonos a tres grupos de definiciones, de lo cual se pretende que al momento de hacer la definición conjunta de que se trata, se tengan ideas más claras de lo que se está hablando.
En cuanto a las definiciones aquí presentadas referidas a Nuevas Tecnologías de Información y Comunicación, vale la pena mencionar que existen tantas como diversos autores, es por ello que probablemente se encuentren discrepancias entre estas, revelando que una definición general como tal, no existe.

2.4.1 Definición de tecnología.
“(Del gr. Technologuía, de téchne, arte y lógos, tratado). Estudio de las leyes generales que rigen los procesos de transformación. // Conjunto de los conocimientos propios de un oficio mecánico o arte industrial. // Tratado de los medios y procedimientos empleados por el hombre para transformar los productos de la naturaleza en objetos usuales. // Aprovechamiento sistemático de conocimientos y prácticas. // Una manera determinada de conducir la acción, una forma de planificar y controlar el proceso operativo. // El conjunto de todos los conocimientos, adecuadamente organizados, necesarios para la producción y comercialización de un bien o de un servicio. // Técnicas para organizar lógicamente cosas, actividades o funciones de manera que pueden ser sistemáticamente observadas, comprendidas y transmitidas.” (Diccionario de las Ciencias de la Educación, 1997).

“Tecnología es la propiedad para aplicar los conocimientos de la Ciencia en los procesos de producción. La Tecnología sería así el lazo de unión de las ideas científicas y la aplicación práctica de dichas ideas.” (http://es.wikipedia.org/)

2.4.2 Definición de información.
“La información es un conjunto organizado de datos, que constituyen un mensaje sobre un determinado ente o fenómeno.” (http://es.wikipedia.org/)
“Comunicación o adquisición de conocimientos que permiten ampliar o precisar los que se poseen sobre una materia determinada. Conocimientos así comunicados o adquiridos.” (Diccionario electrónico de la Lengua Española: http://buscon.rae.es/draei/)

2.4.3 Definición de comunicación.

“En el uso cotidiano del término puede entenderse por comunicación aquel proceso que posibilita el intercambio de significados entre sujetos por medio de una serie de convenciones sistematizadas en unos códigos y aplicadas sobre un concreto tipo de medio semiótico (verbal, escrito, gestual….).” (Diccionario de las Ciencias de la Educación, 1997).

Con ayuda de los conceptos presentados anteriormente, se puede ver que, si tratamos de unirlos en una sola definición, haríamos referencia al conjunto de avances tecnológicos que nos proporcionan la informática, las telecomunicaciones y las tecnologías audiovisuales, que comprenden los desarrollos relacionados con las computadoras, el Internet, la telefonía, los medios masivos, las aplicaciones multimedia y la realidad virtual. Estas tecnologías básicamente nos proporcionan información, herramientas para su proceso y canales de comunicación.

Todo lo anterior, hace hincapié a las NTIC, que se caracterizan porque son herramientas computacionales e informáticas que procesan, almacenan, sintetizan, recuperan y presentan información representada de la más variada forma. Las NTIC son un conjunto de herramientas, soportes y canales para el tratamiento y acceso a la información; dan forma, registran, almacenan y difunden contenidos informacionales.
2.4.4 ¿TIC o NTIC?

El establecimiento en la sociedad de las llamadas “nuevas tecnologías” de la comunicación e información, está produciendo cambios insospechados respecto a los originados en su momento por otras tecnologías, como lo fueron en su momento la imprenta, y la electrónica. Sus repercusiones, como era de esperarse no sólo las encontramos en el terreno de la información y la comunicación, sino que también provocan y proponen cambios en la estructura social, económica, laboral, jurídica, política, educativa, etc. Esto es debido a que no sólo permiten la captación de la información, sino también, otorgan posibilidades para manipularla, almacenarla y distribuirla.

Como señalan Castell y otros (1986): “Un nuevo espectro recorre el mundo: las nuevas tecnologías. A su conjuro ambivalente se concitan los temores y se alumbran las esperanzas de nuestras sociedades en crisis. Se debate su contenido específico y se desconocen en buena medida sus efectos precisos, pero apenas nadie pone en duda su importancia histórica y el cambio cualitativo que introducen en nuestro modo de producir, de gestionar, de consumir y de morir”.

Indudablemente, estas denominadas nuevas tecnologías (NT) crean nuevos entornos, tanto humanos como artificiales de comunicación, y establecen nuevas formas de interacción hombre-máquina donde encontramos que cada uno de estos desempeñan roles diferentes, en comparación con los modelos clásicos de recepción-transmisión de información, por lo que, trae como consecuencia, que el conocimiento contextualizado se construya de acuerdo a la interacción que usuario y máquina establezcan.

Hasta este punto, valdría la pena reflexionar si cuando hablamos de tecnologías en vez de nuevas tecnologías, hacemos referencia a los mismos cambios o a las mismas consecuencias. La respuesta es sí. Veamos porque.

Considero que para tratar de “separar” a las NTIC de las TIC, es necesario tomar en cuenta lo inapropiado y objetivo que resulta emplear el adjetivo Nueva. Como
primer punto, es indiscutible, que la novedad que hoy en día caracterizan a las tecnologías como nuevas, no será eterna y pasará con el tiempo, haciendo entonces que esta característica de nueva sea utilizada para las que surjan en un futuro inmediato; adjudicando entonces a las nuevas tecnologías que hoy conocemos el nombre de tradicionales tecnologías, recordemos que, como se mencionó antes, la convergencia tecnológica es impresionante y en un “abrir y cerrar de ojos” una tecnología se puede volver tradicional o ya no merecerse la anteposición de nueva. Aunado a esto, cuando hablamos de nuevas tecnologías tendemos a centrarnos demasiado en el video y en la informática; que si bien es cierto, que en su momento fueron NT, en la actualidad son tecnologías tradicionales, dejando de esta manera fuera, lo que en un sentido estricto serían hoy las NT: multimedia, televisión por cable y satélite, hipertextos, etc. (Paradójicamente, la tecnología de video e informática son las nuevas tecnologías que se están introduciendo a las escuelas).

En la recopilación de información para realizar este trabajo, me he encontrado con que la forma en que se utilizan éstos dos términos depende del autor, pero en ambos casos se hace referencia a lo mismo. Por lo tanto, mi propósito es, dejar claro que agregar la palabra nueva a las tecnologías de información y comunicación, sirve para hacer referencia a las tecnologías actuales, o mejor dicho; sirven para establecer que son lo “último” en tecnologías; sin embargo, recordemos que hoy en día, una tecnología apenas nace, muere; lo cual no ayuda para nada a delimitar con exactitud a las TIC de las NTIC.

Este conflicto de utilización de términos, se debe probablemente a que no se ha logrado distinguir formalmente entre "tecnologías" y "nuevas" tecnologías de la información y comunicación. De ahí, que algunos autores opten por utilizar otros términos como el de "tecnologías avanzadas".

Solo para resumir que se habla de lo mismo al hacer referencia a las NTIC o TIC, se citan algunos conceptos a continuación.
2.4.4.1 Conceptos de NTIC.

“Se entiende por "nuevas tecnologías de la información y la comunicación" el conjunto de procesos y productos derivados de las nuevas herramientas (hardware y software), soportes de la información y canales de comunicación relacionados con el almacenamiento, procesamiento y transmisión digitalizados de la información.” González y otros, (1996).

Castell y otros (1986) indica que "las NTIC, comprenden una serie de aplicaciones de descubrimiento científico cuyo núcleo central consiste en una capacidad cada vez mayor de tratamiento de la información".

Considerando a Gisbert y otros (1992), tenemos que, “Las NTIC hacen referencia al conjunto de herramientas, soportes y canales para el tratamiento y acceso a la información.”

“Las NTIC son los últimos desarrollos de la tecnología de la información que en nuestros días se caracterizan por su constante innovación.” Santillana (1991).

2.4.4.2 Conceptos de TIC.

“Las tecnologías de la información y de las comunicaciones (TIC) son un término que se utiliza actualmente para hacer referencia a una gama amplia de servicios, aplicaciones, y tecnologías, que utilizan diversos tipos de equipos y de programas informáticos, y que a menudo se transmiten a través de las redes de telecomunicaciones.”

(Comisión de las Comunidades Europeas: 2001).

“Las TIC incluyen una serie de tecnologías que apoyan a la comunicación e información entre personas:
1) El acopio de información, por ejemplo por el World Wide Web
2) El almacenamiento, elaboración, análisis y presentación de la información, incluyendo diferentes medios para textos, datos, gráficos, fotos, audio, tales como
Las TIC agrupan un conjunto de sistemas necesarios para administrar la información, y especialmente los ordenadores y programas necesarios para convertirla, almacenarla, administrarla, transmitirla y encontrarla. Los primeros pasos hacia una sociedad de la información se remontan a la invención del telégrafo eléctrico, pasando posteriormente por el teléfono fijo, de la radiotelefonía y, por último, de la televisión. Internet, la telecomunicación móvil y el GPS pueden considerarse como nuevas tecnologías de la información y la comunicación.

Con base a lo anterior, podemos darnos cuenta, que hablar de TIC o NTIC es hacer referencia a un conjunto de sistemas necesarios para administrar la información, y especialmente las computadoras y programas necesarios para convertirla, almacenarla, administrarla, transmitirla y encontrarla.

Es importante recalcar, que, la revolución tecnológica constante en que vivimos actualmente se debe a los avances significativos que ha habido en ella, es evidente que, los cambios que caracterizan básicamente esta nueva sociedad son: la generalización del uso de las tecnologías, las redes de comunicación, el rápido desenvolvimiento tecnológico y científico y la globalización de la información.

Así como las tecnologías en general evolucionaron, se transformaron y dieron cavidad a otras tecnologías más sofisticadas, en consecuencia, las NTIC también tienen su historia. Su evolución, introducción a nuestra sociedad, impactos, etc. Son fenómenos que se originaron desde su aparición y marcaron el paso de las actividades humanas, por lo que para conocerlos es necesario escrutar su pasado.
2.5 La evolución de las Tecnologías de la Información y la Comunicación.

De acuerdo al artículo de Adell, (1997) se indica que son varios autores, tales como Levinson, (1990); Harnad, (1991); o Bosco, (1995), que proponen que la historia humana se puede dividir en fases o periodos caracterizados por la tecnología dominante de codificación, almacenamiento y recuperación de la información, esto por lo que ha originado los cambios tecnológicos en la organización del conocimiento, en las formas de organización social y en la cognición humana. Por lo tanto, si revisamos un poco de historia, será posible comprender las transformaciones que ya estamos viviendo en la actualidad.

De acuerdo a estos autores, Adell menciona que el primer cambio importante consistió en el surgimiento de la lengua; el lenguaje oral. Esto significó la codificación del pensamiento mediante sonidos producidos por las cuerdas bucales y la laringe, lo cual fue sin duda un hecho revolucionario. ¿Por qué? Sencillamente porque permitía la referencia a objetos no presentes y expresar los estados internos de la conciencia. El habla proporcionó una nueva dimensión a la interacción humana. El habla convirtió el pensamiento en una mercancía social. Con el habla se hizo posible hacer pública y almacenar la cognición humana. El conocimiento de los individuos podía acumularse. La palabra hablada proporcionó un medio a los humanos de imponer una estructura al pensamiento y transmitirlo a otros.

Sin embargo, un mundo en el que la palabra o la expresión oral no es plasmada, carecería de conocimiento, pues la palabra existe sólo mientras es pronunciada y en la memoria de los oyentes, y, sin libros, sin escritos, sin todo lo relacionado con la escritura simplemente no habría legado cultural, cognitivo; probablemente tendríamos otra formación y el mundo en el que vivimos sería diferente. Esto, nos lleva a la segunda revolución.
La segunda revolución, fue producto de la creación de signos gráficos para registrar el habla. La palabra escrita trajo como consecuencia la independencia de la información del acto entre el hablante y el oyente, permitiendo registrar el tiempo y espacio en que se dijo o se escuchó, permitió la posibilidad de preservar para la posteridad o para los no presentes el registro de lo hablado. Sin embargo, la escritura presentaba inconvenientes, tales como que era lenta en relación a la rapidez del lenguaje hablado, la lectura es un acto individual (a no ser que se convierta en palabra hablada) y, era un medio mucho menos interactivo de comunicación que el habla. Pero la palabra escrita sufrió cambios; se hizo más reflexivo y estructurado. La escritura estabilizó, particularizó e hizo objetivo el conocimiento. Reestructuró nuestra conciencia y creó el discurso autónomo, libre de contexto, independiente del hablante/autor. La literatura y, sobre todo, la ciencia se beneficiaron de la fiabilidad y sistematización que la escritura confirió al conocimiento y al pensamiento. La posibilidad de acumular el conocimiento, de transferirlo a la posteridad o que pudiera ser reproducido y transportado hicieron de la escritura un desarrollo estratégico.

En esta etapa, la escuela tuvo una gran influencia para la difusión de la escritura, la cual no era rápida ni generalizada; pero gracias a esta se pudo lograr. Las primeras escuelas conocidas datan de 2.000 años a.c., en Sumeria y su objetivo era enseñar la escritura cuneiforme a una clase social privilegiada, a unos "especialistas": los escribas. Aprender a leer y escribir requería el uso de medios extraordinarios, pues ya no era posible hacerlo mediante la observación y la repetición de los actos de quienes enseñaban.

Entonces hablamos de la tercera revolución; la imprenta. Con la imprenta se hizo posible la reproducción de textos en grandes cantidades, lo cual influyó de manera contundente en áreas que también sufrían transformaciones tales como la política, la economía, la social, la cultural, etc. La imprenta significó la posibilidad de producir y distribuir textos en masa.
El mismo Adell (1997) señala que Harnad. Cree que nuestra cultura está tan fuertemente basada en la tecnología de la imprenta de la que resulta sobrante extenderse en sus consecuencias. El mundo tal como lo conocemos es producto de la imprenta (si exceptuamos la influencia de los medios de masas electrónicos, como la TV, en las últimas décadas).

La imprenta contribuyó a una auténtica revolución en la difusión del conocimiento y de las ideas y, por tanto, en la evolución de nuestros sistemas políticos, la religión, la economía y prácticamente todos los aspectos de nuestra sociedad. Aprender a leer y a escribir es, todavía, el más importante aprendizaje que se realiza en la escuela. Es la puerta de acceso a la cultura y a la vida social. Pero, en la actualidad, estamos viviendo una cuarta revolución.

Por fin; la era de los medios electrónicos y la digitalización; la cuarta revolución. Estos medios, presentan un código más abstracto y artificial pues se apoya en aparatos informáticos para producir y descifrar de representación de la información.

Considerando a Bosco, Adell (1997) indica que éste sitúa el origen de esta nueva etapa en una fecha concreta: el 24 de mayo de 1844, cuando Samuel Morse envió el primer mensaje por telégrafo. Por primera vez, la información viajaba más rápido que su portador; ahora viajaba a la velocidad de la luz. También surgió la primera máquina analítica de Babbage; la ENIAC fue el primer ordenador digital. En este proceso de digitalización, la electrónica ha propiciado el rápido desarrollo de aplicaciones analógicas (el teléfono, la radio, la televisión, el fax, etc.), que en la actualidad están migrando rápidamente hacia la digitalización y adquiriendo capacidades interactivas entre emisor y receptor y de procesamiento y manipulación de la información ampliadas. Los avances en la creación de imagen de síntesis, por ejemplo, ha aumentado el número de aplicaciones de esta nueva forma de codificar la información: no sólo tenemos textos, imágenes y sonidos digitalizados que podemos almacenar y reproducir indefinidamente de modo fiel, sino que también podemos producirlos desde la nada, generarlos a voluntad. Han
aparecido nuevos tipos de materiales, desconocidos por supuesto anteriormente: multimedia, hipermedia, simulaciones, documentos dinámicos productos de consultas a bases de datos, etc.

Los satélites de comunicaciones y las redes terrestres de alta capacidad permiten enviar y recibir información desde cualquier lugar de la Tierra.

Este es el entorno que vivimos hoy, el mundo para el cual debemos ser formados con las competencias necesarias en las instituciones educativas; el mundo de las nuevas tecnologías de la información y la comunicación.

Finalmente, no hay que olvidar que todos estos avances tecnológicos no sólo tienen implicaciones en la sociedad, sino que, también son producto de las condiciones sociales, económicas y culturales de una época; no cabe duda que la sociedad actúa como propulsor decisivo no sólo de la innovación sino de la difusión y generalización de la tecnología. La revolución de la ciencia y la tecnología que hoy vivimos, se está dando particularmente a las tecnologías de información y comunicación; que se ve reflejada en los cambios de los medios, canales y soportes de la información.

Adell (1997) cita al autor Levinson (1990), quien explica que la evolución de las tecnologías de la comunicación es una sucesión de tres estadios:

En el primero, nuestra especie se encuentra en un entorno comunicativo en el que todas las características del mundo natural percibido están presentes, pero en el que la comunicación está restringida por los límites biológicos de la vista, el oído y de la memoria.

Para superar dichos límites biológicos, el ser humano desarrolla nuevas tecnologías. El precio es la renuncia al entorno de comunicaciones naturales; de los sentidos.

Los nuevos medios electrónicos (analgólicos primero y posteriormente digitales) no sólo extienden nuestras posibilidades de comunicación más allá de nuestros
límites biológicos, sino que recuperan elementos y características de la etapa pre-tecnológica anterior a la escritura. La realidad hoy en día es experimentada vertiginosamente en cualquier lugar, en el mismo momento que sucede en la otra parte del planeta es registrada para la posteridad. El uso de artefactos, curiosamente, nos ha devuelto los sentidos en la comunicación humana. El teléfono nos devolvió la conversación y eliminó gran parte de la correspondencia personal. La TV nos volvió a hacer testigos directos de los acontecimientos (testigos pasivos, por otra parte). Las nuevas tecnologías de la información, según este autor, y al contrario de lo que señalan muchos críticos, no están haciendo el mundo más artificial, sino, en el sentido indicado, más "natural".

2.6 Características de las Nuevas Tecnologías de Información y Comunicación.

Julio Cabrero (1996), indica que en relación a las características más distintivas de las NT, son varios los autores que mencionan como tales: inmaterialidad, interactividad, instantaneidad, innovación, elevados parámetros de calidad de imagen y sonido, digitalización, influencia más sobre los procesos que sobre los productos, automatización, interconexión y diversidad.

La inmaterialidad es una de las características básica de las NT que, considerando que su materia prima es la información; son capaces de generarla y procesarla.

En cuanto a la interactividad es aquella característica que trata de involucrar al sujeto-máquina en todos los sentidos posibles y la adaptación de ésta interacción a las características psicológicas, evolutivas y educativas del usuario. Las NT permiten que el usuario, no sólo pueda elaborar mensajes, cuestión por otra parte también realizable con otras tecnologías más tradicionales, sino también, y es lo importante, decidir la secuencia de información a seguir, establecer el ritmo, cantidad y profundización de la información que se desea, y elegir el tipo de código con el que quiere establecer relaciones con la información.
También hacen posible la instantaneidad de la información, rompiendo las barreras temporales y espaciales de naciones y culturas.

La innovación obedece a que las NT persiguen como objetivo la mejora, el cambio y la superación cualitativa y cuantitativa de su predecesora, y por ende de las funciones que estas realizaban.

Los parámetros que poseen las NT en calidad técnica de imágenes y sonidos, no se refieren únicamente a manejar la información de manera más rápida y transportarla a lugares alejados, sino también que la calidad y fiabilidad de la información sea bastante elevada.

La digitalización consiste en transformar información codificada analógicamente, en códigos numéricos, que permiten más fácilmente su manipulación y distribución. Esto favorece la transmisión de todo tipo de información por los mismos canales, como es el caso de las redes digitales de servicios integrados (RDSI), que facilitan la distribución de todos los servicios necesarios (videoconferencias, programas de radio, transmisión de datos...) por una misma red. Aunque las NT se presentan como independientes, presentan la posibilidad de interconexión y de formar una nueva red de comunicación de manera, que implique un refuerzo mutuo de las tecnologías unidas, que lleven a un impacto mayor que las tecnologías individuales.

El que las NT afecten más a los procesos que a los productos se refiere a que la razón de ser las NT no sólo se encuentra en los resultados informativos que podemos alcanzar, sino fundamentalmente en los procesos que podemos seguir para llegar a ellos. Procesos que no sólo determinaran calidades diferentes en los productos, sino que determinaran productos diferenciados, teniendo como consecuencia el desarrollo de habilidades específicas en los sujetos.

La diversidad debemos entenderla en primer lugar, que frente a encontrarnos con tecnologías unitarias, nos hallamos con tecnologías que giran en torno a algunas de las características citadas; y en segundo lugar, por la diversidad de funciones
que pueden desempeñar, desde las que transmiten información exclusivamente como los videodiscos, hasta las que permiten la interacción entre usuarios, como la videoconferencia.

Retomando todas las características de las NTIC, hablar de estas tecnologías, es incluir a todas aquellas herramientas computacionales útiles para trabajar con información, manipularla y poder satisfacer nuestras necesidades sobre el uso de la información. Recordemos que la información es lo que se transmite en el proceso de comunicación y bajo este enfoque, se consideran tecnologías de información y comunicación a las computadoras personales, Internet, teléfonos móviles, asistentes personas digitales y todo aquel dispositivo similar.

2.7 Impacto de las NTIC.

Las NTIC, indudablemente marcan notablemente a nuestra sociedad en su evolución y a pesar de que el impacto del uso de estas se muestra en todas las actividades humanas; es necesario revisarlo desde dos vertientes; desde la sociedad y desde la educación. Debemos Considerar que, la manera en que afecte a la sociedad en general, será un reflejo de cómo afectaría a las demás actividades humanas, por lo que en consecuencia, en el ámbito educativo, recae todo el peso de formar individuos capaces de asimilar y ser capaces de competir en el mundo exigente de la actualidad.

José L. Montero (2006), en su artículo, muestra los impactos de las NTIC desde dos vertientes; desde la sociedad y desde la educación.

2.7.1 Impacto de las NTIC en la sociedad.

Es notorio que, los cambios que estamos viviendo y los que, sin duda, vamos a conocer en los próximos años son muy superiores a los vividos con la aparición de los avances tecnológicos de épocas anteriores en el mundo de la comunicación e
información. Aunque en su momento, inventos como la imprenta, el teléfono, la radio, el cine, la televisión, marcaron una auténtica revolución, las tecnologías actuales penetran a nuestra sociedad con un mayor impacto por su característica de globalización, rapidez y capacidad de crecimiento.

Montero (2006), indica que para Castañeda, las llamadas Nuevas Tecnologías de la Información y las Comunicaciones son el resultado de las posibilidades creadas por la humanidad en torno a la digitalización de datos, productos, servicios y procesos, y de su transportación a través de diferentes medios, a grandes distancias y en pequeños intervalos de tiempo, de forma confiable, y con relaciones costo-beneficio nunca antes alcanzadas por el hombre.

Si bien es cierto que las NTIC están haciendo que se resuelvan problemas tradicionales, a su vez están ampliando problemas que parecían pequeños y están haciendo aparecer otros nuevos. En la mayoría de los casos, es el resultado inmediato de la incorporación precipitada y nada crítica de estas tecnologías.

Nos permiten percatarnos del poder de la información, y la información como espacio simbólico donde se esclarece el poder de los más fuertes y los mecanismos efectivos de expandirlo. Las tecnologías, el poder y el mandato sobre las estas, están permitiendo un desarrollo personal y social de más calidad, pero también, al mismo tiempo, se están convirtiendo en una barrera que separa y excluye socialmente.

Para la mayoría de los habitantes del tercer mundo, los vaticinios tecnológicos pasan desapercibidos, lo cual indica que estos beneficios van de la mano con condiciones políticas específicas, y sobre todo económicas, muy particulares.

Como se ha puesto claramente de manifiesto desde el movimiento denominado “Ciencia, Tecnología y Sociedad”, las relaciones entre la sociedad y las tecnologías son bidireccionales, de forma que la sociedad influye para creación y potenciación de determinadas tecnologías y, al mismo tiempo, las tecnologías impulsan determinados modelos sociales y culturales. Ello nos lleva con toda
claridad a asumir y rechazar la concepción de la neutralidad de las tecnologías e indicar con completa claridad que las tecnologías no son neutras sino que reflejan y potencian determinados valores, incluso su neutralidad puede ser puesta en duda desde sus inicios, ya que la potenciación de unas tecnologías frente a otras viene en primer lugar impulsada, o rechazada, por los valores subyacentes en esa sociedad y en ese momento histórico.

2.7.2 Impacto de las NTIC en la educación.

Las actividades de cualquier núcleo social se han visto afectadas por los cambios que provoca el avance tecnológico. Una de estas actividades es el proceso de enseñanza/aprendizaje que, de no ser por la tecnología, mantendría su procedimiento invariable.

La introducción de las tecnologías en la educación, siempre han causado expectación. El uso educativo de la radio o la televisión en su momento provocaron discusiones que llevaron a posiciones opuestas con respecto a su potencialidad pedagógica y a la factibilidad de su uso en los procesos educativos.

Hoy, a diferencia de las tecnologías de información anteriores -cassette, prensa, diapositivas, vídeo- la computadora tiene un potencial técnico menos restringido que el de tecnologías anteriores. La computadora conlleva el potencial de impactar a la sociedad en su conjunto. Además, la utilización de tecnologías en el ámbito educativo implica procesos distintos de procesamiento de información, y por tanto, de aprendizaje.

Los ejemplos de un futuro maravilloso gracias a la computadora y de un proceso educativo casi fantástico y eficientísimo basado en ella pululan en muchos medios de los países desarrollados, pero en la realidad no se han colmado esas expectativas.
El hecho de que la computadora y las demás tecnologías de información puedan servir para la educación es innegable. Sin embargo esto no significa que las tecnologías de información sean principalmente tecnologías educativas. Por el contrario, su aparición en la sociedad ha estado motivada por múltiples eventos, unos técnicos, otros económicos, otros políticos. Su vinculación con los procesos educativos no ha sido ni es automática. En el contexto moderno de los países capitalistas su vinculación además no nace de una necesidad educativa sino de una económica principalmente.

La introducción de las NTIC en el Proceso de Enseñanza-Aprendizaje como contenido y como medio de enseñanza, como cultura y como recurso social, y como reto a todos sus actores, es una realidad y una necesidad social impuesta por el desarrollo tecnológico de la sociedad.

El mismo Montero (2006) de nuevo citando a Castañeda, menciona que para éste, los impactos en la educación podrían resumirse así:

- Cambios en las condiciones espacio-temporales del proceso.
- Cambios en el objeto principal de atención del proceso.
- Cambios en el modelo fundamental de la Comunicación Educativa.
- Cambios en la forma de gestionar la información y los conocimientos.
- Cambios en las funciones preponderantes del profesor.
- Cambios en la utilización de la vía transdisciplinar en la formación.
- Cambio del paradigma de la experimentación.

Toda esta revolución desatada por las NTIC, en la sociedad y en la educación, también traen consigo otros cambios, hoy en día, el dominio sólo de la lectura y la escritura a través de los medios impresos (revistas, periódicos, libros, etc.) es insuficiente ya que sólo permite acceder a una parte de la información que se
presenta en la sociedad, por lo que una persona que no está al alcance de las nuevas tecnologías queda fuera de la red comunicativa que éstas representan.

Por lo tanto en un futuro inmediato aquellos ciudadanos que no estén preparados para el uso de las NTIC tendrán altas probabilidades de ser marginados culturales en la sociedad del siglo XXI. Las NTIC a pesar de sus ventajas comunicativas también pueden separar. Estrechan la comunicación entre quienes las utilizan, pero excluyen a quienes no. Es evidente que las políticas educativas mucho tienen que decir en relación a evitar, o al menos, compensar estas desigualdades en el acceso a la información y el conocimiento en la mayoría de los países del tercer mundo.

Como podemos darnos cuenta, la incorporación de las NTIC no es una opción, sino una necesidad derivada de su evolución.

2.8 Breve cronología de la introducción de las TIC en la educación básica.
De acuerdo al portal de IMAP, la introducción de las TIC a la educación básica es notoria desde 1968, ocurriendo sucesos tales como:

1968 • Se crea la Telesecundaria

1985-1992 • Opera el programa de computación en la Educación Básica (COEEBA)

• Se oficializa la Red Edusat

• Se impulsa el uso de las TIC.

• Surge el PROED.
• Se generan convenios y contratos con los estados.

1996-2000 • Se deslinda a TELECOMM del mantenimiento de la Red Edusat.

• Se crean las Coordinaciones Estatales de Educación a Distancia

1998 • Se crea programas nuevos: SEA, SEPa inglés, EMSAD.

• Se impulsa la creación de los Centros Estatales de Tecnología Educativa.

1999 • Se realiza el Programa de mantenimiento y operación de la Red Edusat (PEMOE).

• Se identifica déficit de televisores en Telesecundaria.

 Surge SEC XXI

2000 • Se realiza el programa de consolidación de telesecundarias para cubrir déficit de televisores.

• Se oficializa la Videoteca Nacional Educativa.

• Se incorporan nuevos proyectos a la infraestructura educativa nacional.

• Se realiza el primer estudio nacional sobre el uso de las TIC en la educación básica.

2003 • Enciclomedia.
2.9 Ventajas y Desventajas de las NTIC: repercusiones en la educación.

Debido al auge, grado de aceptación e implicación en cualquier ámbito de nuestra vida de las NTIC, son muy conocidos los beneficios o dicho de otra forma, las ventajas de su utilización.

Quién no ha escuchado que aportan rapidez, comodidad, accesibilidad, son amenas, autodidactas de alguna forma, permiten compartir información, ahorran esfuerzo, etc. Sin embargo, muy poco se habla de las desventajas que presentan; razón de ser de este apartado.

Para Ma. Victoria Aguiar (2002), algunas de estas sombras en el desarrollo tecnológico son:

- Uniformismo cultural.

El proceso de globalización tiene mucho que ver en este sentido, pues conjuntamente con los medios de comunicación se está imponiendo una hegemonía cultural, dejando a un lado las culturas propias y locales. El Uniformismo cultural se observa cada vez más en la misma música que se escucha, la ropa, la comida, etc.

- Tecnología y desigualdad social.

Con esto nos referimos a que las TIC afectan a todos los miembros de una sociedad, me parece que es imposible no darse cuenta de que existen y hacer uso de estas, sin embargo no impactan de la misma forma a todos. El acceso a las NTIC está al alcance de aquellas personas que tienen las posibilidades en cuanto a infraestructura, poder adquisitivo y habilidades para comprarlas y usarlas, lo cual trae como consecuencia que la brecha entre sociedades y culturas se haga cada vez mayor.
- La pérdida de la privacidad.

La utilización de las NTIC implica el registro de las referencias personales y actividades de los usuarios. Esos datos, pueden ser consultados por las empresas privadas, organismos e instituciones sociales; violando de alguna forma la libertad de los usuarios. Probablemente esto no represente ningún problema, pues el uso que este tipo de instituciones pueda hacer de nuestros registros es para su uso privado, el verdadero problema radicaría realmente en el uso malicioso que algunos individuos puedan hacer con esos datos.

- La dependencia tecnológica.

Si hacemos un recuento, desde que la tecnología apareció en nuestras vidas, nos hemos vuelto dependientes de ella paralelamente a medida que ésta va progresando. Pensemos en qué pasaría si tan sólo se cayera la red de un banco en un día de pago de nómina o si somos víctimas de virus informáticos, ¿qué pasaría con nuestra información?

Ya que conocemos nuestras debilidades frente a las tecnologías de información y comunicación, es conveniente analizar cómo estas desventajas afectan a la educación; es decir; los retos que la educación enfrenta en el proceso de enseñanza-aprendizaje.

La misma autora, Ma. Victoria Aguiar (2002), señala que los problemas educativos más significativos generados por la omnipresencia tecnológica, son:

- Las dificultades en la adaptación a un mundo cambiante.

La aparición de las tecnologías y su evolución, exigió a nuestra sociedad un reajuste y adaptación de sus individuos para que se lograra una interacción con la nueva forma cultural y de comunicación social que las TIC traían consigo. El problema es, que éste proceso de adaptación a la innovación tecnológica, nunca fue tan dramática como lo es ahora. Las anteriores tecnologías fueron adaptadas por nosotros paulatinamente y lograron implantarse en un proceso que tal vez
duró varios años. Sin embargo, las nuevas tecnologías han irrumpido a nuestra sociedad, exigiendo un proceso acelerado de adaptación y adopción de las innovaciones tecnológicas.

- El analfabetismo tecnológico.

Precisamente, el cambio vertiginoso de es víctima nuestra sociedad con respecto a la innovación tecnológica, nos obliga a realizar un esfuerzo formativo enfocado a adquirir las competencias instrumentales, cognitivas y actitudinales derivadas del uso de las tecnologías. El rechazo a esta actualización “obligatoria” sólo traería como consecuencia formar parte de los nuevos analfabetos. Analógicamente sería como no saber leer y escribir; aunque vivamos en un mundo lleno de libros y de información a nuestro alcance, simplemente no tendríamos acceso a ella y estaríamos excluidos entonces de muchas áreas de la sociedad.

- Saturación de la información.

Vivimos en una sociedad en la que todo el tiempo recibimos información, gracias a los múltiples y variados medios de comunicación existentes. Sin embargo, no siempre sabemos transformar esa información en conocimiento. Tal y como menciona (el autor de este libro) “a más información, también existe más desconocimiento” y es que el exceso de la cantidad de datos e información que recibimos provoca pérdida del significado de los mismos. Cabe mencionar que uno de los retos educativos es orientar, guiar a los usuarios de la información, de manera que les permita distinguir lo importante de lo no relevante.

- Las nuevas formas culturales.

La presentación de la información a través de las nuevas formas de comunicación e información de alguna forma hacen a un lado la forma “tradicional” en que se nos presentaba la información. El hipertexto, la imagen, el sonido, son una forma distinta de publicarla. Las nuevas maneras de comunicarse constituyen una nueva forma de entenderse, de participar y por lo tanto, de aprender.
- Nuevas demandas formativas.

Al existir cambios tecnológicos, hay repercusiones también en la economía y en el aspecto laboral (entre otros). Las herramientas e instrumentos introducidos por las nuevas tecnologías que están modificando muchas actividades profesionales, exigen que la formación profesional esté preparada para los cambios que este fenómeno trae consigo.

Es imposible no darse cuenta que, los puntos anteriores traerán como consecuencia reajustes a los sistemas educativos existentes. Las instituciones educativas se caracterizan por la lenta introducción de los cambios dentro de sus estructuras. Para la convergencia que estamos viviendo, esta peculiaridad indica una inadaptación a las necesidades formativas y a las exigencias organizacionales. La educación es un motor de cambios, progreso y cohesión social; es una actividad de interacción humana intencional y en consecuencia es regulada por sentimientos, valores, ideas, actitudes, aunque en estos tiempos tiene que mediar para dicha interacción con un sinfín de artefactos tecnológicos.

Por otra parte, considerando al autor Dr. Pere Marqués (2000), catedrático de la Facultad de Educación de España; las ventajas y desventajas de las NTIC en el ámbito educativo, se pueden analizar desde tres perspectivas:
VENTAJAS

<table>
<thead>
<tr>
<th>DESDE LA PERSPECTIVA DEL APRENDIZAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interés, Motivación. Los alumnos están muy motivados al utilizar los recursos TIC y la motivación (el querer) es uno de los motores del aprendizaje, ya que incita a la actividad y al pensamiento. Por otro lado, la motivación hace que los estudiantes dediquen más tiempo a trabajar y, por tanto, es probable que aprendan más.</td>
</tr>
<tr>
<td>Interacción. Continúa actividad intelectual. Los estudiantes están permanentemente activos al interactuar con el ordenador y entre ellos a distancia. Mantienen un alto grado de implicación en el trabajo. La versatilidad e interactividad del ordenador, la posibilidad de "dialogar" con él, el gran volumen de información disponible en Internet., les atrae y mantiene su atención.</td>
</tr>
<tr>
<td>Desarrollo de la iniciativa. La constante participación por parte de los alumnos propicia el desarrollo de su iniciativa ya que se ven obligados a tomar continuamente nuevas decisiones ante las respuestas del ordenador a sus acciones. Se promueve un trabajo autónomo.</td>
</tr>
</tbody>
</table>

DESVENTAJAS

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distracciones. Los alumnos a veces se dedican a juego en vez de trabajar.</td>
</tr>
<tr>
<td>Dispersión. La navegación por los atractivos espacios de Internet, llenos de aspectos variados e interesantes, inclina a los usuarios a desviarse de los objetivos de su búsqueda. Por su parte, el atractivo de los programas informáticos también mueve a los estudiantes a invertir mucho tiempo interactuando con aspectos accesorios.</td>
</tr>
<tr>
<td>Pérdida de tiempo. Muchas veces se pierde mucho tiempo buscando la información que se necesita: exceso de información disponible, dispersión y presentación atomizada, falta de método en la búsqueda.</td>
</tr>
<tr>
<td>Informaciones no fiables. En Internet hay muchas informaciones que no son fiables: parciales, equivocadas, obsoletas.</td>
</tr>
</tbody>
</table>
| **Aprendizajes incompletos y superficiales.** La libre interacción de los alumnos con estos materiales, no siempre de calidad y a menudo descontextualizado, puede proporcionar aprendizajes incompletos.
riguroso y metódico.

- **Aprendizaje a partir de los errores.** La velocidad inmediata a las respuestas y a las acciones de los usuarios permite a los estudiantes conocer sus errores justo en el momento en que se producen y, generalmente el programa les ofrece la oportunidad de ensayar nuevas respuestas o formas de actuar para superarlos.

- **Mayor comunicación entre profesores y alumnos.** Los canales de comunicación que proporciona Internet (correo electrónico, foros, chat) facilitan el contacto entre los alumnos y con los profesores. De esta manera es más fácil preguntar dudas en el momento en que surgen, compartir ideas, intercambiar recursos, debatir, etc.

- **Aprendizaje cooperativo.** Los instrumentos que proporcionan las TIC (fuentes de información, materiales interactivos, correo electrónico, espacio compartido de disco, foros) facilitan el trabajo en grupo y el cultivo de actitudes sociales, el intercambio de ideas, la cooperación y el desarrollo de la personalidad. El trabajo en grupo estimula con visiones de la realidad simplistas y poco profundas. Acostumbrados a la inmediatez, los alumnos se resisten a emplear el tiempo necesario para consolidar los aprendizajes, y confunden el conocimiento con la acumulación de datos.

- **Diálogos muy rígidos.** Los materiales didácticos exigen la formalización previa de la materia que se pretende enseñar y que el autor haya previsto los caminos y diálogos que seguirán los alumnos. Por otra parte, en las comunicaciones virtuales, a veces cuesta hacerse entender con los “diálogos” ralentizados e intermitentes del correo electrónico.

- **Visión parcial de la realidad.** Los programas presentan una visión particular de la realidad, no la realidad tal como es.

- **Ansiedad.** La continua interacción ante el ordenador puede provocar ansiedad en los estudiantes.

- **Dependencia de los demás.** El trabajo en grupo también tiene sus inconvenientes. En general conviene hacer grupos estables (donde los alumnos ya se conozcan) pero flexibles (para ir variando) y no conviene que los grupos sean
a sus componentes y hace que discutan sobre la mejor solución para un problema, se critiquen, se comuniquen los descubrimientos. Además aparece más tarde el cansancio, y algunos alumnos razonan mejor cuando ven resolver un problema a otro que cuando tienen ellos esta responsabilidad.

- **Alto grado de interdisciplinariedad.** Las tareas educativas realizadas con ordenador permiten obtener un alto grado de interdisciplinariedad ya que el ordenador debido a su versatilidad y gran capacidad de almacenamiento permite realizar muy diversos tipos de tratamiento a una información muy amplia y variada. Por otra parte, el acceso a la información hipertextual de todo tipo que hay en Internet potencia mucho más esta interdisciplinariedad.

- **Alfabetización digital y audiovisual.** Estos materiales proporcionan a los alumnos un contacto con las TIC como medio de aprendizaje y herramienta para el proceso de la información (acceso a la información, proceso de datos, expresión y comunicación), generador de experiencias y aprendizajes. Contribuyen a facilitar la necesaria alfabetización numerosos, ya que algunos estudiantes se podrían convertir en espectadores de los trabajos de los otros.
informática y audiovisual.

- **Desarrollo de habilidades de búsqueda y selección de información.** El gran volumen de información disponible en CD/DVD y, sobre todo Internet, exige la puesta en práctica de técnicas que ayuden a la localización de la información que se necesita y a su valoración.

- **Mejora de las competencias de expresión y creatividad.** Las herramientas que proporcionan las TIC (procesadores de textos, editores gráficos...) facilitan el desarrollo de habilidades de expresión escrita, gráfica y audiovisual.

- **Fácil acceso a mucha información de todo tipo.** Internet y los discos CD/DVD ponen a disposición de alumnos y profesores un gran volumen de información (textual y audiovisual) que, sin duda, puede facilitar los aprendizajes.

- **Visualización de simulaciones.** Los programas informáticos permiten simular secuencias y fenómenos físicos, químicos o sociales, fenómenos en 3D, de manera que los estudiantes pueden experimentar con ellos y así comprender mejor
<table>
<thead>
<tr>
<th>VENTAJAS</th>
<th>DESVENTAJAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESDE LA PERSPECTIVA DE LOS ESTUDIANTES</td>
<td></td>
</tr>
<tr>
<td>- A menudo aprenden con menos tiempo. Este aspecto tiene especial relevancia en el caso del "training" empresarial, sobre todo cuando el personal es apartado de su trabajo productivo en una empresa para reciclarse.</td>
<td>- Adicción. El multimedia interactivo e Internet resulta motivador, pero un exceso de motivación puede provocar adicción. El profesorado deberá estar atento ante alumnos que muestren una adicción desmesurada a videojuegos, chats.</td>
</tr>
<tr>
<td>- Atractivo. Supone la utilización de un instrumento atractivo y muchas veces con componentes lúdicos.</td>
<td>- Aislamiento. Los materiales didácticos multimedia e Internet permiten al alumno aprender solo, hasta le animan a hacerlo, pero este trabajo individual, en exceso, puede acarrear problemas de sociabilidad.</td>
</tr>
<tr>
<td>- Acceso a múltiples recursos educativos y entornos de aprendizaje. Los estudiantes tienen a su alcance todo tipo de información y múltiples materiales didácticos digitales, en CD/DVD e Internet, que enriquecen los procesos de enseñanza y aprendizaje. También pueden acceder a los entornos de teleformación. El profesor ya no es la fuente principal de conocimiento.</td>
<td>- Cansancio visual y otros problemas físicos. Un exceso de tiempo trabajando ante el ordenador o malas posturas pueden provocar diversas dolencias.</td>
</tr>
<tr>
<td>- Personalización de los procesos de enseñanza y aprendizaje. La existencia de múltiples materiales didácticos y recursos educativos facilita la individualización de la enseñanza y el</td>
<td>- Inversión de tiempo. Las comunicaciones a través de Internet abren muchas posibilidades, pero exigen tiempo: leer mensajes, contestar, navegar.</td>
</tr>
<tr>
<td>- Adicción. El multimedia interactivo e Internet resulta motivador, pero un exceso de motivación puede provocar adicción. El profesorado deberá estar atento ante alumnos que muestren una adicción desmesurada a videojuegos, chats.</td>
<td>- Sensación de desbordamiento. A veces el exceso de información, que hay que revisar y seleccionar, produce una sensación de desbordamiento: falta</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
aprendizaje; cada alumno puede utilizar los materiales más acordes con su estilo de aprendizaje y sus circunstancias personales.

- **Autoevaluación.** La interactividad que proporcionan las TIC pone al alcance de los estudiantes múltiples materiales para la autoevaluación de sus conocimientos.

- **Mayor proximidad del profesor.** A través del correo electrónico, puede contactar con él cuando sea necesario.

- **Flexibilidad en los estudios.** Los entornos de teleformación y la posibilidad de que los alumnos trabajen ante su ordenador con materiales interactivos de autoaprendizaje y se puedan comunicar con profesores y compañeros, proporcionan una gran flexibilidad en los horarios de estudio y una descentralización geográfica de la formación. Los estudiantes tienen más autonomía. La educación puede extenderse a colectivos que no pueden acceder a las aulas convencionales.

- **Recursos educativos con poca potencialidad didáctica.** Los materiales didácticos y los nuevos entornos de teleformación no siempre proporcionan adecuada orientación, profundidad de los contenidos, motivación, buenas interacciones, fácil comunicación interpersonal, muchas veces faltan las guías didácticas... También suelen tener problemas de actualización de los contenidos.

- **Instrumentos para el proceso de la información.** Las TIC les proporcionan poderosos instrumentos para procesar la información: escribir, calcular, hacer tiempo.

- **Comportamientos reprobables.** A veces en los mensajes por correo electrónico, no se cumplen las normas de la “netiquette”. (Conjunto de reglas para regular el comportamiento de los usuarios de distintos servicios en Internet)

- **Falta de conocimiento de los lenguajes.** A veces los alumnos no conocen adecuadamente los lenguajes (audiovisual, hipertextual...) en los que se presentan las actividades informáticas, lo que dificulta o impide su aprovechamiento.

- **Virus.** La utilización de las nuevas tecnologías expone a los virus informáticos, con el riesgo que suponen para los datos almacenados en los discos.
presentaciones.

- **Ayudas para la Educación Especial.** En el ámbito de las personas con necesidades especiales es uno de los campos donde el uso del ordenador en general, proporciona mayores ventajas. Muchas formas de disminución física y psíquica limitan las posibilidades de comunicación y el acceso a la información; en muchos de estos casos el ordenador, con periféricos especiales, puede abrir caminos alternativos que resuelvan estas limitaciones.

- **Ampliación del entorno vital.** Más contactos. Las posibilidades informativas y comunicativas de Internet amplían el entorno inmediato de relación de los estudiantes. Conocen más personas, tienen más experiencias, pueden compartir sus alegrías y problemas.

- **Más compañerismo y colaboración.** A través del correo electrónico, chats y foros, los estudiantes están más en contacto entre ellos y pueden compartir más actividades lúdicas y la realización de trabajos.

| **Esfuerzo económico.** Cuando las TIC se convierten en herramienta básica de trabajo, surge la necesidad de comprar un equipo personal. | y el coste (en tiempo y dinero) para proteger los ordenadores. |
VENTAJAS

DESVENTAJAS

DESDE LA PERSPECTIVA DE LOS PROFESORES

- **Fuente de recursos educativos para la docencia, la orientación y la rehabilitación.** Los discos CD/DVD e Internet proporcionan al profesorado múltiples recursos educativos para utilizar con sus estudiantes: programas, Webs de interés educativo.

- **Individualización.** Tratamiento de la diversidad. Los materiales didácticos interactivos (en disco y en línea) individualizan el trabajo de los alumnos ya que el ordenador puede adaptarse a sus conocimientos previos y a su ritmo de trabajo. Resultan muy útiles para realizar actividades complementarias y de recuperación en las que los estudiantes pueden auto controlar su trabajo.

- **Facilidades para la realización de agrupamientos.** La profusión de recursos y la variedad y amplitud de información en Internet facilitan al profesorado la organización de actividades grupales en las que los estudiantes deben interactuar con estos materiales.

- **Mayor contacto con los estudiantes.** El

- **Estrés.** A veces el profesorado no dispone de los conocimientos adecuados sobre los sistemas informáticos y sobre cómo aprovechar los recursos educativos disponibles con sus alumnos. Surgen problemas y aumenta su estrés.

- **Desarrollo de estrategias de mínimo esfuerzo.** Los estudiantes pueden centrarse en la tarea que les plantea el programa en un sentido demasiado estrecho y buscar estrategias para cumplir con el mínimo esfuerzo mental, ignorando las posibilidades de estudio que les ofrece el programa. Muchas veces los alumnos consiguen aciertos a partir de premisas equivocadas, y en ocasiones hasta pueden resolver problemas que van más allá de su comprensión utilizando estrategias que no están relacionadas con el problema pero que sirven para lograr su objetivo. Una de estas estrategias consiste en "leer las intenciones del maestro". Por otra parte en Internet pueden encontrarse muchos trabajos que los alumnos pueden simplemente copiar para entregar al profesor como propios.
<table>
<thead>
<tr>
<th>Correo electrónico permite disponer de un nuevo canal para la comunicación individual con los estudiantes, especialmente útil en la caso de alumnos con problemas específicos, enfermedad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberan al profesor de trabajos repetitivos. Al facilitar la práctica sistemática de algunos temas mediante ejercicios autocorrectivos de refuerzo sobre técnicas instrumentales, presentación de conocimientos generales, prácticas sistemáticas de ortografía, liberan al profesor de trabajos repetitivos, monótonos y rutinarios, de manera que se puede dedicar más a estimular el desarrollo de las facultades cognitivas superiores de los alumnos.</td>
</tr>
<tr>
<td>Facilitan la evaluación y control. Existen múltiples programas y materiales didácticos en línea, que proponen actividades a los estudiantes, evalúan sus resultados y proporcionan informes de seguimiento y control.</td>
</tr>
<tr>
<td>Actualización profesional. La utilización de los recursos que aportan las TIC como herramienta para el proceso de la información y como instrumento docente, supone una actualización profesional.</td>
</tr>
<tr>
<td>Desfases respecto a otras actividades. El uso de los programas didácticos puede producir desfases inconvenientes con los demás trabajos del aula, especialmente cuando abordan aspectos parciales de una materia y difieren en la forma de presentación y profundidad de los contenidos respecto al tratamiento que se ha dado a otras actividades.</td>
</tr>
<tr>
<td>Problemas de mantenimiento de los ordenadores. A veces los alumnos, hasta de manera involuntaria, desconfiguran o contaminan con virus los ordenadores.</td>
</tr>
<tr>
<td>Supeditación a los sistemas informáticos. Al necesitar de los ordenadores para realizar las actividades proyectadas, cualquier incidencia en éstos dificulta o impide el desarrollo de la clase.</td>
</tr>
<tr>
<td>Exigen una mayor dedicación. La utilización de las TIC, aunque puede mejorar la docencia, exige más tiempo de dedicación al profesorado: cursos de alfabetización, tutorías virtuales, gestión del correo electrónico personal, búsqueda de información en Internet.</td>
</tr>
<tr>
<td>Necesidad de actualizar equipos y programas. La informática está en continua evolución, los equipos y los programas...</td>
</tr>
</tbody>
</table>
para el profesorado, al tiempo que mejoran sin cesar y ello nos exige una completa su alfabetización informática y audiovisual. Por otra parte en Internet pueden encontrar cursos en línea y otras informaciones que puedan contribuir a mejorar sus competencias profesionales: prensa de actualidad, experiencias que se realizan en otros centros y países.

- **Constituyen un buen medio de investigación didáctica en el aula.** El hecho de archivar las respuestas de los alumnos cuando interactúan con determinados programas, permite hacer un seguimiento detallado de los errores cometidos y del proceso que han seguido hasta llegar a la respuesta correcta.

- **Contactos con otros profesores y centros.** Los canales de información y comunicación de Internet facilitan al profesorado el contacto con otros centros y colegas, con los que puede compartir experiencias, realizar materiales didácticos colaborativamente.
2.10 Conceptos de Tecnología Educativa.

Existen tantas definiciones de tecnología educativa como autores, y probablemente la diferencia que podamos encontrar entre éstas, se deba a que obedecen a la época y reconstrucción histórica de que fueron creadas.

Originalmente, la tecnología en la educación se asoció exclusivamente al uso de medios audiovisuales; sin embargo, en 1984 la UNESCO planteó un enfoque que va más allá del uso de medios y la describió como un “... modo sistemático de concebir, aplicar y evaluar en conjunto los procesos de la enseñanza y el aprendizaje, teniendo en cuenta a la vez los recursos técnicos y humanos y las interacciones entre ellos, como forma de obtener una educación más efectiva”.

Las definiciones que podemos encontrar en la literatura especializada cita a autores como HOBAN, cuya apreciación de la tecnología educativa (T.E.) es “una compleja trama de ideas, procedimientos y sistemas” o la expresada por ROMISZOWSKI “un cuerpo coherente de técnicas basadas en el método científico y los resultados de las investigaciones científicas y aplicadas a los problemas prácticos de las educación”. Una definición más detallada es que la T.E. es “una forma de diseñar, desarrollar y evaluar el proceso total de enseñanza-aprendizaje en términos de objetivos específicos, basada en las investigaciones sobre el mecanismo del aprendizaje y la comunicación, que, aplicando una coordinación de recursos humanos, metodológicos, instrumentales y ambientales, conduzca a una educación más eficaz” Reunión Nacional de Tecnología Educativa, (1976).

“Es una manera sistemática de diseñar, llevar a cabo y evaluar todo el proceso de aprendizaje y enseñanza en términos de objetivos específicos, basados en la investigación del aprendizaje y la comunicación humana, empleando una combinación de recursos humanos y materiales para conseguir un aprendizaje más efectivo.” De Pablos Pons (1994).

“Es el estudio científico de las prácticas educativas, técnica-práctica fundada en el conocimiento científico, dado que “la tecnología pretende borrar esa distancia entre la eficacia infundada y el saber científico, al servir de puente entre la técnica y la ciencia.” Quesada castillo (1990).

En algún momento la tecnología educativa fue entendida como la introducción de los medios o recursos audiovisuales e informáticos al aula con el objeto de apoyar la enseñanza (refiriéndose más a una concepción de tecnología en la educación y no de tecnología educativa), sin embargo se han hecho grandes esfuerzos para tomar conciencia de que no puede ser concebida de esa forma, ya que al hacerlo no solamente se reducen a un mínimo sus posibilidades sino que además, promoviendo la esperanza de grandes resultados automáticos a partir de su introducción, pierde de vista el hecho de que los medios y las nuevas tecnologías son sólo una parte de la tecnología educativa. La tecnología por sí misma no puede tener un efecto sobre el proceso de aprendizaje si no se cuenta con un enfoque metodológico y teórico que le de sustento dentro del proceso de enseñanza-aprendizaje.

Como podemos ver, el concepto de tecnología educativa puede concebirse como un modelo de organización integrada de personas, significados y conceptualizaciones, a través de la utilización de diversos medios tecnológicos, como son la televisión, los videos, los multimedios, impresos, las redes de cómputo y la teleconferencia, entre otras, que facilitan la tarea cooperativa de elaboración, implantación y evaluación de ambientes y programas educativos abiertos, flexibles y adecuados a las necesidades de la dinámica existente al interior de la comunidad y de la emergente sociedad global.
La tecnología educativa, al igual que la didáctica, se preocupa por las prácticas de la enseñanza, pero a diferencia de esta, incluye entre sus preocupaciones el análisis de la teoría de la comunicación y de los nuevos desarrollos tecnológicos: la informática, hoy, en primer lugar, el video, la tv, la radio, el audio y los impresos, viejos o nuevos, desde libros hasta carteles, por lo que otra manera de entender a la Tecnología Educativa es como el cuerpo de conocimientos que, basándose en disciplinas científicas referidas a las prácticas de la enseñanza, incorpora todos los medios a su alcance y responde a la consecución de fines en los contextos socio históricos que le otorguen significación.

La tecnología educativa son los medios de comunicación y métodos de instrucción que pueden ser usados para educar. Ejemplos de tecnología educativa, son “…las computadoras, el programa educativo “Plaza Sésamo”, la W.W.W., el multimedia, los videocasetes, las fotografías, las películas, el gis y pizarrón, los libros, los periódicos, los discos compactos, los videodiscos, las canciones, las caricaturas, la televisión, los juegos, el Internet, las filminas, las diapositivas, los audiocasetes, los documentales, los marcadores y pintarrón, la radio, el teatro, el DVD, el CD-ROM, la cátedra, los laboratorios, entre otros”. Escamilla (2005).

2.10.1 Origen de la Tecnología Educativa.

Para Bartolomé y Sancho (1994), es posible situar como el origen de la tecnología educativa la década de los 50, ya que esta es una década clave para el posterior desarrollo de todos los ámbitos de la tecnología educativa, destacándose en ese momento la importancia creciente del tema de la comunicación. Este origen, que se sitúa en estados unidos, se caracteriza porque predomina el desarrollo de los artefactos y una voluntad declarada de contar con otros campos científicos de apoyo, especialmente el de la psicología.

En esos años, la tecnología educativa se constituye en la opción, en tanto se ocupa de los problemas prácticos de la enseñanza, a diferencia de otros campos.
La psicología de la educación, por ejemplo, aparecía centrada en búsquedas investigativas de fuerte carácter experimental.

La inversión militar que realiza Estados Unidos en programas de adiestramiento favorece la incorporación de los aportes del conductismo a los desarrollos de la tecnología educativa. Esta influencia se manifiesta en la implementación de diseños instructivos, en los que aparecen enfatizadas las nociones de estímulo y esfuerzo.

Bartolomé y Sancho indican que la investigación de la época parecía centrada en los materiales, los aparatos y los medios de instrucción, encarando la comparación entre medios, a partir de la elaboración de instrumentos para su evaluación y selección. El medio era la variable mágica que, aplicada a toda enseñanza, a todo alumno, a cualquier grado, para cualquier materia y con cualquier objetivo, daría los resultados deseados, y partiendo de esa ideología, se intentaba determinar cuál era el medio eficaz.

En la década de los 60’s se comienzan a incorporar los avances de la psicología cognitiva, para un análisis de los medios desde los procesos cognitivos provocados. Se intenta comprobar la incidencia de distintos métodos o medios en el proceso de aprendizaje del alumno.

Hacia fines de esta década y en los años 70’s, la tecnología educativa se denota desde dos puntos de vista; el que se refiere a la visión restringida aparece al empleo de nuevas tecnologías, pero sigue siendo el límite de los artefactos, de la utilización de medios, lo que caracteriza el campo. Esta visión tiene escaso desarrollo en América Latina por los costos que implica la tecnologización de los sistemas educativos.

La segunda visión denominada amplia, la tecnología educativa se caracteriza por un conjunto de procedimientos, principios y lógicas para atender a los problemas de la educación.
Estos mismos autores Bartolomé y Sancho (1994), indican que, en un trabajo elaborado por la ILCE, se indica que el origen del campo de la tecnología educativa se caracteriza por un error inicial; creer que la utilización de instrumentos derivados del avance técnico mejorara automáticamente la eficiencia y eficacia de los sistemas educativos y abriría posibilidades para la sustitución del profesor. Bajo este enfoque, la enseñanza sólo es concebida como mera transmisión de información. Sin embargo, aún no se comprueba que la inclusión de los medios al sistema educativo lo mejore que tomando en cuenta la visión amplia, la intención de la tecnología educativa es controlar el proceso de enseñanza-aprendizaje:

La concepción de tecnología educativa, como el uso de recursos audiovisuales en la enseñanza, pronto fue refutada, aunque pudo sobrevivir largo tiempo entre algunos educadores y comunicadores latinoamericanos... reducida a los dispositivos, era inapropiado hablar de una tecnología educacional; más bien se estaba presenciando un fenómeno de tecnología en la educación. Es decir, artefactos tecnológicos concebidos para tareas ajenas al campo educativo se incorporaban a este con propósitos instruccionales.

En este sentido, una aguda observación respecto a la definición del campo consistió en establecer la distinción entre procesos y productos; entre hardware y software. En estos términos, ya era posible hablar de tecnología educativa, es decir, procedimientos, estrategias y métodos, derivados del conocimiento sobre el factum educativo, que se aplicaban a la resolución de problemas prácticos.

Ya no se trataba únicamente de dispositivos o medios técnicos introducidos en el ámbito pedagógico, sino también de elementos instrumentales para sistematizar los procesos y la organización educativa.

Así, la visión amplia se inicia en la década de los 60, reafirmandose en la década de los 70; marcando la Tecnología educativa, fundándose en el desarrollo y la administración de elementos sistémicos.
En este enfoque (sistémico) la educación es concebida como el sistema o la totalidad de subsistemas interrelacionados. El sistema es un conjunto de datos vinculados entre sí y con los datos del medio ambiente. Funciona en relación con los propósitos para los cuales fue creado y desde la retroalimentación, se pretende uniformar su funcionamiento; volverlo estable.

La búsqueda, en este enfoque, está orientada al acrecentamiento de la eficiencia y al control de que realmente se produzcan los efectos buscados, se pretende la regularidad. No aparece una búsqueda de la contradicción como el modo de avanzar en el conocimiento.

Entonces la tecnología educativa fue criticada; probablemente por la dominancia del enfoque sistémico que caracterizaba a los postulados teóricos del campo, se mencionaba que habría automatización del proceso de enseñanza y del sujeto de aprendizaje, que las escuelas tendría ahora una visión empresarial, resaltaría el mecanicismo, instrumentalismo, eficientismo y desestimación del contexto histórico-político-social del proceso educativo.

Después de esta década, en los 90, la tecnología educativa deja de promover el estudio de la enseñanza como proceso tecnológico, para darle importancia a la didáctica o a la teorización de la enseñanza.

Tomando como referencia al autor Manuel Area Moreira (2002), Docente de la Universidad de La Laguna, España, el origen y evolución de la Tecnología educativa se puede resumir de la siguiente manera:

La formación militar en EU durante su participación en la II Guerra Mundial se considera tradicionalmente como el momento del surgimiento de un nuevo enfoque de la enseñanza caracterizado por la búsqueda de procesos eficaces de formación en general y por la utilización de medios y recursos técnicos y sofisticados como rasgo particular. Este enfoque, que posteriormente será conocido como TE (Tecnología de la Educación), surgió a partir de la necesidad de tener que formar y convertir a un gran número de ciudadanos en soldados y
oficiales preparados para asumir tareas y acciones en la organización y actividad bélica. Bajo estas circunstancias, el Estado Norteamericano se encontró con el siguiente problema: cómo formar y adiestrar a grandes cantidades de sujetos en poco tiempo y que obtuviesen un rendimiento efectivo en los aprendizajes propuestos.

Los Psicólogos y educadores que fueron convocados para dar respuesta a este problema encontraron la solución poniendo en práctica programas de acción instructiva basados en el logro de objetivos precisos y concretos de aprendizaje (formación en destrezas específicas según las tareas a desempeñar en la organización militar), control y racionalización de las variables procesuales (cómo presentar la información, cómo organizar a los alumnos, qué prácticas deben realizar,...), utilización de los recursos audiovisuales, y medición precisa de los resultados de aprendizaje a través de pruebas estandarizadas. Es decir, a través de estos programas de formación militar se estaban sentando las bases de lo que posteriormente sería la Tecnología Educativa. La tarea consistía en elaborar un cuerpo de conocimiento científico que supusiera la ruptura con una concepción y prácticas tradicionales y artesanas de enseñanza para alcanzar un proceso racionalizado y tecnologizado de la actividad instructiva.

Los años cincuenta y sesenta: La fascinación por los medios audiovisuales

La configuración propiamente dicha de la Tecnología Educativa como campo de estudio dentro de la educación surge en el contexto americano de los años cincuenta. Se considera, que la aparición de tecnología educativa se debe a la influencia de tres factores:

1.- La difusión e impacto social de los medios masivos: radio, cine, tv y prensa. En estas décadas aparecen numerosos artilugios y aparatos de comunicación en el mercado norteamericano. En los años cincuenta en Estados Unidos el impacto del cine y aparición de la televisión se encuentran en su plenitud. Por ello bajo la fascinación que produce en los investigadores educativos los nuevos recursos
tecnológicos (las diapositivas, retroproyectores, proyectores de películas, la televisión, etc.) les conduce a suponer que éstos tienen propiedades intrínsecas que incrementarían notablemente el aprendizaje de los alumnos.

2.- El desarrollo de los estudios y conocimientos en torno al aprendizaje del ser humano bajo los parámetros de la psicología conductista. La psicología conductista ofrecía una teoría “coherente y científica” que supuestamente explicaba el comportamiento humano y el aprendizaje como adquisición de nuevos patrones conductuales siempre y cuando se ofrecieran los estímulos adecuados. Los medios, en buena lógica, representaban para los investigadores educativos los ‘estímulos apropiados’ que posibilitarían procesos instructivos eficaces.

3.- Los métodos y procesos de producción industrial. La industria y economía americanas en esta época alcanzan un gran desarrollo. El proceso de producción se tecnifica tanto en el sentido de introducción de maquinaria que realiza tareas más complejas como en la racionalización en el uso y aplicación de los recursos humanos y materiales. De este modo se va configurando el supuesto de que las escuelas son similares a las empresas en su organización. Por lo que los métodos gerenciales de organización se pensó que pudieran ser aplicables a las escuelas con el fin de incrementar los resultados educativos.

Bajo este contexto, fue fácil que prendiese el entusiasmo y cobrase fuerza la creencia de que aplicando en la educación las tecnologías que tenían éxito en otros campos como la comunicación y la industria el sistema educativo alcanzarían niveles de eficacia y rendimiento semejantes a esos otros ámbitos. El interés de los investigadores educativos se centró sobre el hardware o soportes físico-materiales de la enseñanza. Es decir, el intento de incrementar la eficacia de la enseñanza a través de procesos de aprendizaje que supusieran la interacción de los sujetos con nuevos recursos tecnológicos comenzó a denominarse como Tecnología Educativa.
En este sentido, Área Moreira (2002), citando a Lumsdaine menciona una definición de tecnología educativa:

"Tecnología Educacional: En esencia, es un método, mecanizado, que subraya la importancia de los auxiliares en la enseñanza y sus orígenes se encuentran en la aplicación de las ciencias físicas a la educación...". (Lumsdaine, 1964).

El mismo autor Área Moreira (2002), indica que Kemp, señala que en los años 60s en los Estados Unidos de Norteamérica, después de que Rusia enviase el Sputnik al espacio, la educación se convirtió en una alta prioridad nacional. La National Defense Education Act (NDEA) ofreció fondos para la mejora de la enseñanza de las ciencias, matemáticas y lengua extranjera. Rápidamente se encontró disponible dinero para la investigación sobre los medios y su difusión. Se desarrollaron numerosos proyectos de medios y programas instructivos que exploraban los valores de una cuidadosa integración de los medios en la enseñanza.

Se creía, entonces en aquel tiempo, que las nuevas tecnologías (representadas por el hardware de las mismas) tendrían la capacidad por sí mismas de incrementar la calidad y eficacia del sistema educativo. Este supuesto se vio corroborado por la aparición de las "máquinas de enseñar" que Skinner y sus colaboradores habían diseñado bajo los auspicios de la enseñanza programada. “Bloom, Gagné, Tyler y otros investigadores habían sentado las bases teóricas y ofrecido los principios y procedimientos necesarios para que el diseño de la enseñanza no fuera una actividad intuitiva y artesanal, sino que debería tener el rigor y sistematicidad necesarios (principios y procedimientos fundamentados en los resultados de la investigación psicológica) que permitiesen la elaboración de programas y paquetes de multimedia educativos que mejoraran tecnológicamente la enseñanza”.

El concepto de Tecnología Educativa fue cambiando y así podemos ver que a finales de los años sesentas la concepción de la idea de tecnología educativa ya
era completamente diferente a lo esbozado en los años cincuenta. Así, tenemos, algunas definiciones al respecto, para Gagne, (1968) "... La Tecnología Educativa puede ser entendida como el desarrollo de un conjunto de técnicas sistemáticas y acompañantes de conocimientos prácticos para diseñar, medir y manejar colegios como sistemas educacionales".

Por su parte Chadwick (1987) afirma que "La tecnología educacional, entonces, está definida como la aplicación de un enfoque organizado y científico con la información concomitante al mejoramiento de la educación en sus variadas manifestaciones y niveles diversos"

"La Tecnología Educativa es una forma sistemática de diseñar, desarrollar y evaluar el proceso total de enseñanza-aprendizaje, en términos de objetivos específicos, basada en las investigaciones sobre el mecanismo del aprendizaje y la comunicación que, aplicando una coordinación de recursos humanos, metodológicos, instrumentales y ambientales, conduzca a una educación eficaz" (INCIE, 1976).

"Tecnología Educativa: en un nuevo y más amplio sentido, como el modo sistemático de concebir, aplicar y evaluar el conjunto de procesos de enseñanza y aprendizaje, teniendo en cuenta a la vez los recursos técnicos y humanos y las interacciones entre ellos, como forma de obtener una más efectiva educación" (UNESCO, 1984).

En consecuencia, podemos ver que los años setenta representan la época en la que la T.E alcanza una gran relevancia en el panorama educativo internacional. A lo largo de esa década se publicaron manuales en torno a la Tecnología Educativa que a pesar de sus lógicas variantes, en todo caso más formales que conceptuales, coincidían en ofrecer un cuerpo de conocimientos suficientemente coherentes y sólidos sobre cómo organizar las variables que inciden en el aprendizaje con el fin de planificar ambientes y procesos instructivos dirigidos al logro de objetivos educativos.
Sin embargo, en los años ochenta: surgen las primeras voces críticas en contra de la tecnología educativa. En efecto, la década de los años ochenta representó una fase de revisión crítica sobre lo realizado, un cuestionamiento de los cimientos sobre los que se fundamentó la construcción de un cuerpo conceptual y procedimental racional, sistémico y científico. A finales de los setenta y sobre todo en la década de los ochenta comienzan a emerger y generalizarse numerosos cuestionamientos, reflexiones, críticas y descalificaciones en torno a lo que había sido la evolución de la TE y de la validez y utilidad de la misma para los sistemas educativos.

La Tecnología Educativa, tal como había sido conceptualizada en años anteriores, había entrado en crisis. Hawkridge (1981), ofrece una de las revisiones teóricas más interesantes de los últimos años en torno a la TE. En síntesis las críticas que Hawkridge plantea a esta perspectiva y concepción de la TE son:

- El enfoque reflejaba analogías industriales sobre el pensamiento y prácticas educativas,
- La creencia de que la psicología conductista de Skinner y colbs representaba la base científica para diseñar programas instructivos,
- Sanciona la división del trabajo en educación entre los profesores y los técnicos especialistas en el diseño y dirección de los procesos educativos,
- Sólo se tiene en consideración los comportamientos y mundo objetivo de la enseñanza, desestimando el subjetivismo,
- Ingenuidad en la creencia de lograr un control racional y eficiente sobre los fenómenos y procesos instructivos, y
- Asumir que la TE es un campo neutral y ajeno a los valores.
La Tecnología Educativa en la actualidad.

La Tecnología Educativa después de sufrir una cierta pérdida de horizontes conceptuales y influencia en los ámbitos académicos de la pedagogía motivados por causas diversas como: la indefinición interna de los límites y objeto de estudio de la misma, el cuestionamiento de sus aportaciones, el rechazo de su visión eficientista de la enseñanza, y el poco impacto y utilidad de su conocimiento en la mejora de la educación escolar entre otros, en la década de los noventas nuevamente, tanto en el plano nacional como internacional, la TE ha vuelto a convertirse en un centro de atención relevante dentro del campo educativo.

El acelerado cambio económico, social, político y cultural en el que están inmersos el conjunto de países industriales avanzados, generado, entre otras causas, por el poderoso impacto y desarrollo de las NTIC ha provocado que los investigadores y profesionales educativos hayan tomado conciencia y estén alerta de los efectos culturales y educativos de estas NTIC, especialmente sobre las instituciones y procesos educativos.

“La Tecnología y la Educación, se está convirtiendo en un foco de atención o programa de investigación y docencia claramente identificable en la comunidad pedagógica internacional que aglutina a distintas áreas de las Ciencias Sociales como son la Teoría de la Educación, la Teoría del Curriculum, la Sociología de la Cultura, la Psicología Social, la Teoría y Filosofía de la Comunicación, y por supuesto a la tecnología Educativa”. (Área Moreira, 2002).

En los últimos años se ha producido un gran interés investigador hacia una línea o ámbito temático prioritario: las aplicaciones educativas de las nuevas tecnologías de la información y comunicación como el Internet, la teleformación y el multimedia educativo son los ejes temáticos que aglutinan gran parte de las publicaciones y estudios realizados por diversos investigadores. Por ejemplo, casi sin darnos cuenta, Internet se ha convertido en el espacio de investigación propio de los tecnólogas educativos dejando de lado a otros temas/problemas educativos.
vinculados con los medios y la educación. La producción de software educativo en formato multimedia y difundido a través de discos digitales (bien en CD-ROM, bien DVD); la oferta de educación a distancia a través de Internet mediante campus virtuales, cursos de teleformación, ...; la incorporación de las tecnologías digitales a los centros y aulas escolares; la financiación por parte de las administraciones públicas de proyectos vinculados con e-learning; los planes de alfabetización tecnológica emprendidos por las distintas administraciones públicas, etc., son evidencias palpables de la etapa fructífera en la que se encuentra la Tecnología Educativa en este comienzo del siglo XXI.

Según Manuel Area Moreira (2002) En estos momentos el territorio o espacio de estudio de la Tecnología Educativa son las relaciones o interacciones entre las Tecnologías de la Información y Comunicación y la Educación en múltiples planos y ámbitos de acción que podrían sintetizarse en los siguientes:

Aplicaciones educativas de Internet
- Creación y experimentación de entornos virtuales de enseñanza
- Diseño y desarrollo de programas y cursos de teleformación y/o Educación flexible y a distancia a través de redes telemáticas.
- Aplicaciones didácticas de los servicios de Internet (chat, e-mail, videoconferencia, WWW, bases de datos, etc).

Medios de comunicación y educación
- Utilización didáctica de los medios de comunicación
- Educar para los medios - Análisis de los efectos de los medios sobre niños y jóvenes.

Diseño, desarrollo y evaluación de materiales educativos
- Elaboración y análisis de materiales multimedia e hipertextual
- Elaboración y análisis de materiales curriculares

El profesorado y la integración escolar de los medios y nuevas tecnologías

- El profesorado ante las tecnologías de la información y comunicación (programas y experiencias de formación, estudios de opinión, análisis de actitudes)

- Experiencias y prácticas docentes en el uso de los medios y tecnologías

- Organización de los medios y recursos tecnológicos en el aula y centros educativos

- Proyectos y experiencias pedagógicas de la integración curricular de las nuevas tecnologías y afirma además … “trabajamos los medios como aparatos, luego nos interesaron los medios como soportes de comunicación y en especial los lenguajes a través de los que se simboliza y se representa la información, luego investigamos el impacto cognitivo de los mismos, y últimamente nos han interesado los medios como recursos usados en contextos educativos, aunque todavía poseemos una visión fragmentada y parcial de los medios y las tecnologías como objeto de estudio en relación a la escolarización como fenómeno social y cultural” “…La Tecnología Educativa, en consecuencia, debe ser considerada como ese espacio intelectual pedagógico cuyo objeto de estudio serían los efectos socioculturales e implicaciones que para la educación poseen las tecnologías de la información y comunicación en cuanto formas de representación, difusión y acceso al conocimiento y a la cultura de los ciudadanos”. Específicamente, y en coherencia con lo señalado, los ámbitos de estudio y de conocimiento de la Tecnología Educativa actualmente son los siguientes:

 o Las metas, naturaleza y sentido de la educación (tanto en el ámbito escolar como no formal) en un contexto social y cultural caracterizado por el predominio de las N.T y los medios de comunicación de masas;
o Las aplicaciones y potencial pedagógico de los medios y recursos tecnológicos que pueden ser usados en los procesos de enseñanza-aprendizaje tanto en la modalidad de educación presencial como a distancia;

o El papel y efectos de las tecnologías y medios en la configuración y difusión de la cultura y conocimiento y en el desarrollo de los proyectos, experiencias y programas educativos innovadores.

2.11 Comunicación y Educación.
La constante incorporación de innovaciones tecnológica como recursos comunicativos para la interrelación social, está cuestionando fuertemente a la educación, quien por el contrario, a pesar de su larga trayectoria histórica y la gran influencia norteamericana de la tecnología educativa desde los años 50, se han mantenido a la zaga del avance tecnológico, privilegiando por siglos, en aras del ideal intelectual clásico, la expresión verbal y escrita casi como sus únicos recursos comunicativos.

La educación, en sus intentos de innovar, ha efectuado reformas que no implican un cambio radical o violento de la institución escolar, sino por el contrario, ha sido lento. En cuanto a la comunicación, se propician cada vez más procesos sofisticados a través de diversos medios tecnológicos.

La educación actualmente está preocupada por modernizar sus métodos y por aprovechar sobre todo los recursos más novedosos de comunicación vía satélite y de computación (las llamadas nuevas tecnologías) porque ciertamente, aplicaciones como la consulta de datos por medio de Internet, el intercambio individual y colectivo por correo electrónico y las teleconferencias y videoconferencias por vía satélite son una gran oportunidad a procesos de enseñanza-aprendizaje, de modo que las relaciones entre educación y comunicación se van estrechando cada vez más.
No es posible concebir una educación sin comunicación. Para Paoli: “la comunicación es un hecho social que no se refiere solo a medios masivos de difusión, ni a la lengua hablada, sino que tiene algo que ver con todos los procesos sociales”. (Aurora Del Corral 2004). Sobre esta línea, como ciencia social que es la comunicación, su objetivo es comprender y explicar todos los procesos de índole comunicativa que tienen lugar en la sociedad, es por ello que se puede abordar desde un enfoque comunicativo el análisis de los procesos educativos que ocurren en la sociedad. De igual manera, la educación también es una ciencia social y estudia los fenómenos relacionados con la capacidad de desarrollo y superación del hombre.

2.11.1 El audiovisual educativo en México.

Parafraseando a Salvador Ávila (2007), en su artículo de la SEP; “historia del audiovisual educativo en México”, encontramos que la historia de los audiovisuales educativos se remonta a las sociedades precolombinas y desemboca en nuestros días en los modernos medios de comunicación de masas. La función desempeñada por los medios audiovisuales fue determinante en algunas de las etapas de la historia de la educación; en otras si bien no tuvo la misma trascendencia, coadyuvó a sus fines reforzando, motivando o haciendo menos rutinario el aprendizaje.

Los pueblos del México, antiguo, al igual que la Grecia y la Roma clásicas, hicieron gran uso de los medios audiovisuales con fines de objetivación, principalmente de su historia, a través de medios como frescos murales, estelas, glíptica, códices, arte plumario, etcétera. Antes de la llegada de los europeos, la historia en México se escribía mediante dibujos estilizados y pictogramas, y aún después de la conquista se conservó esta forma de notación.

Para Salvador Ávila (2007), el papel que jugaron las imágenes en la conquista espiritual de México (1521-1572), fue formidable, ya que la imagen era
considerada como un instrumento de conocimiento o de expresión de subjetividad, y no como mera ornamentación. Los primeros misioneros franciscanos que llegaron a nuestro país, fueron los creadores de una metodología abierta y flexible, basada en sus diferentes experiencias, que luego transmitieron a sus compañeros de orden, quienes la educaron a las características de las distintas áreas de misión. La originalidad de la obra misionera (de los mendicantes sobre todo), en cuanto a la creación de métodos audiovisuales, radicó en la restauración de dos tradiciones altamente icónicas, la medieval y la precolombina, y en su adaptación a las nuevas condiciones socioculturales.

Desde octubre de 1997, un equipo de investigadores de la Dirección General de Televisión Educativa, se dio a la tarea de explorar en archivos y bibliotecas, con el fin de recabar información y elaborar una historia de los audiovisuales educativos en México.

El primer objetivo de esta tarea radica en documentar las formas en que fueron utilizados dichos medios en los procesos socializadores de la enseñanza en nuestro país desde la época precolombina hasta la primera mitad del siglo XX.

El teatro evangelizador, la pintura mural, los títeres y la litografía, al igual que el grabado, la fotografía, los instrumentos de ilusión óptica, el cine y la radio, también son objetos de atención de esta obra.

Es posible constatar, por ejemplo, que más allá de satisfacer una necesidad colectiva de entretenimiento, algunos espectáculos públicos, representaron, a lo largo de los siglos XVIII y XIX, formas invaluables de aprendizaje, al constituir, con frecuencia, los únicos medios de que disponía la población para acceder a la información y al conocimiento. Las sombras chinescas-espectáculo milenarios del lejano Oriente que se conoció también en México, y algunos de los juegos o instrumentos de ilusión óptica como los dioramas, los panoramas, los cosmoramas y las vistas estereoscópicas, transcendieron los márgenes de la experiencia
lúdica, para convertirse, voluntaria o involuntariamente, en vehículos de información "objetiva" sobre personajes, hechos, lugares y acontecimientos.

La exploración del uso didáctico de los medios audiovisuales, conduce también a entender la importancia que tuvo el cinematógrafo como instrumento para la enseñanza y su inserción formal en los programas de educación y cultura desarrollados por la Secretaría de Educación Pública a lo largo de la primera mitad de nuestro siglo.

El cinematógrafo, llegar a representar una auténtica punta de lanza para este organismo federal su uso se proyectó a casi todos los ámbitos socioculturales y geográficos, y se pretendió que estuviera presente en el mayor número de instituciones de enseñanza del país.

De este modo, lo mismo se echó mano del cine en medio urbano como en el rural, para la castellanización de los indígenas y la alfabetización de los iletrados, y tanto en las escuelas de educación básica como en las superiores. La educación audiovisual se asumió como un proyecto singular y el cinematógrafo como una de sus herramientas fundamentales.

Al igual que el cinematógrafo la radio fue otro de los medios utilizados con fines pedagógicos: En México no solamente hubo una radiodifusión educativa, sino que ésta, además se caracterizó por ser fecunda e innovadora en muy diversos aspectos. Sin embargo, hablar del desarrollo de la radio educativa en México, equivale prácticamente a reconstruir la historia de la estación radiodifusora de la Secretaría de Educación Pública (la X:F:X), pues esta fue, de hecho, la única estación que se planteó como meta proporcionar educación y cultura a los sectores mayoritarios y menos favorecidos de la sociedad. La radiodifusión educativa de esa época (primera mitad de nuestro siglo), casi siempre estuvo alentada y sostenida por personalidades que hoy ya son iconos indiscutibles de las letras, el arte y la cultura de México: Narciso Bassols, Jaime Torres Bodet,
Agustín Yáñez, José Gorostiza, Germán List Arzubide, Xavier Villaurrutia, Álvaro Gálvez y Fuentes, y Rufino Tamayo.

2.11.2 La radio y la televisión como medios de comunicación educativos.

Actualmente, los avances tecnológicos han permitido que la radio llegue a más personas: la Amplitud y la Frecuencia Modulada han crecido de manera considerable en cuanto a la cantidad y variedad de sus emisoras, el disco compacto ha desplazado a los acetatos, la transmisión vía satélite y la radio en Internet son algunos de los cambios sustanciales, pero los avances tecnológicos no son los únicos impulsores de la radio; ya que, las políticas gubernamentales, las acciones de los concesionarios” son otros elementos que intervienen en su transformación.

A la par del crecimiento del número de emisoras, se incorporaron nuevos contenidos: propaganda política, noticias, música y publicidad, pero también la radio se orientó hacia el servicio de los intereses de la comunidad. Carolina Arteaga (2004), al citar a Figueroa (1996: 47), menciona que este identifica a Fernando Pazos Sosa, como uno de los fundadores de la radio educativa, pues fue él quien se interesó por concienciar a la sociedad con programas educativos para el bienestar común.
Inicios de la radio educativa.

Los programas enfocados a la educación nacen a partir del índice de deserción o de no asistencia al sistema escolarizado formal, debido a que las instituciones escolares se encontraban a distancias inaccesibles en algunas poblaciones. La radio, como un medio económicamente accesible para tenerse en los hogares, fue el espacio alternativo para la educación.

Escuelas radiofónicas.

En 1955 se crean las Escuelas Radiofónicas de la Sierra Tarahumara en Chihuahua, las cuales operaron hasta mediados de los setenta, éstas tenían una estrecha relación con la misión jesuita de extender los beneficios de la educación elemental.

Fomento Cultural y Educativo.

En 1970, el Fomento Cultural y Educativo A.C. (FCE) llega con un nuevo tipo de educación dirigido a los grupos marginados, con la preocupación educativa no sólo de transmitir conocimientos, sino del aprendizaje para la acción, con el objetivo de que estos grupos superaran su forma de vida. Dos de sus proyectos vieron a la radio como un instrumento para la promoción del bienestar social.

Los dos proyectos fueron llevados a cabo en el Estado de Veracruz: la Escuela Radiofónica de Huayacocotla en 1973 a través de la onda corta de la XEJN y la Escuela Radio Cultural Campesina de Teocelo transmitida a través de la SEIT-AM de 1980 a 1989. Ambas tenían la finalidad de alfabetizar en los rincones más insospechados, con la difusión de programas grabados de matemáticas, español y desarrollo en las comunidades, todo ello coordinado por un locutor que entregaba reportes del proceso.
Pero estos proyectos no funcionaron como se deseaba, debido a la inestabilidad de la frecuencia, ya que provocaba la migración de los radioescuchas a otras comunidades. La XEJN se transformó en la XEJN-OC y, con ello, la educación no formal se convirtió en el apoyo principal para impulsar acciones que afectaban directamente a la sociedad. Sus contenidos se diversificaron con la intención de dar voz al pueblo y no sólo de enseñarle mediante programas informativos, como los de noticias o entrevistas, o de entretenérlo a través de programas de comentarios o de radionovelas; esta nueva programación se generó sobre temas con interés social y de capacitación, donde incidía el pueblo de manera más directa al informar sobre actividades locales.

En junio de 1981, la Secretaría de Educación Pública (SEP) inició una campaña de alfabetización denominada Programa Nacional de Alfabetización (PRONALF), se creó una Coordinación Nacional fuera de la SEP. Cuatro meses después, surge el Instituto Nacional de Educación para Adultos (INEA), que se hizo cargo del PRONALF que aporta nuevas alternativas para la alfabetización a través de diferentes medios como la radio, la televisión y los medios individuales.

Instituto Nacional de Educación para Adultos (INEA).

El INEA aprovechó la cobertura y difusión del medio para llegar a más personas. Así, a partir de la naturaleza de la radio y de las necesidades del PRONALF, se emprendió la actividad educadora en dos líneas. La primera buscaba llegar a la concienciación educativa, motivar y sensibilizar a los analfabetas a estudiar o continuar haciéndolo. La segunda estaba enfocada a la lecto-escritura y a las operaciones matemáticas básicas. Ambas constituían dos proyectos diferentes en estructura, pero sus objetivos no estaban distanciados.

La estructura del primer proyecto de alfabetización estaba compuesta por un programa semanal de treinta minutos que se llevaría a cabo en cada una de las delegaciones estatales del INEA con diferentes propósitos: establecer
comunicación entre alfabetizadores y adultos, concienciar a los analfabetas para que se integran a gru vos de estudio, así como motivar a los estudiantes a la no deserción mediante un ambiente de participación. Los contenidos que se manejaban en estos programas eran de interés local.

El segundo proyecto de radioalfabetización fue un modelo didáctico enfocado a la palabra generadora, que produciría materiales con un sistema de organización y operación para echar adelante el proyecto. Una vez puesto en marcha, este proyecto fue puesto a prueba mediante la aplicación de encuestas para eliminar posibles deficiencias. Este modelo didáctico tenía características más definidas que las del primer proyecto: incluía materiales escritos para seguir cada programa de manera gráfica, contaba con la presencia de un asesor en cada sesión, además de la infraestructura que el INEA ya poseía. Este proyecto de radioalfabetización tenía como intención hacer reflexionar al escucha sobre su realidad y la importancia de su participación para la continuidad de su preparación.

El material escrito estaba relacionado directamente con la información auditiva para ser usado de manera simultánea, sin embargo el programa no daba el tiempo suficiente para la resolución de los problemas. El contenido de los programas se adaptaba a las características del medio auditivo con apoyo gráfico, por lo que la información era limitada y repetitiva. Estaba constituido por doce sesiones, 102 programas radiofónicos de 25 minutos aproximadamente, de los cuales 80 programas estaban dedicados al aprendizaje de lecto-escritura, 21 al aprendizaje de operaciones matemáticas y uno más para cerrar la sesión con aspectos didácticos.

Cada uno de estos programas se dividía en tres secciones: el ambiente regional, la radionovela y los contenidos didácticos. La parte ambiental contaba con un espacio de 3 a 5 minutos, seguida de la participación de los alfabetizados, con la lectura de cartas y resolución a sus dudas, quejas o sugerencias. La radionovela tenía un espacio de 3 a 5 minutos para contar historias con temáticas relacionadas
a la palabra generadora del contenido temático, a partir de ello se hacían comparaciones que dieran pie a la reflexión; a estas historias se les daba continuidad para articular la programación. El contenido didáctico contaba con un espacio más amplio de 18 a 22 minutos, donde se dramatizaba una sesión de alumno-profesor dando instrucciones para el manejo del material gráfico, con ambientación sonora sencilla, pero que no contemplaba el tiempo para que los radioescuchas llevaran a cabo sus ejercicios.

El INEA cambió de método en 1989: de la palabra generadora a una metodología global, a la que denominó “El mundo de las letras”. Este proyecto estaba constituido por 70 programas de 30 minutos cada uno y se apoyaba en el material escrito y radial empleado en el proyecto anterior, que había sido previamente reestructurado.

Al cumplir diez años de funcionamiento, el INEA como organismo estatal sufre las consecuencias de la política educativa en turno y se interrumpe la continuidad en los planes educativos. Así, desaparece este tipo de programas.

Historia de la televisión en México.

Rubén Villatoro Guzmán (2007) En 1934 inicia la etapa experimental primeros de la televisión en México. Un joven de 17 años, estudiante del Instituto Politécnico Nacional, realiza pruebas con un sistema de televisión de circuito cerrado, en un pequeño laboratorio montado en las instalaciones de la estación de radio XEFO. Durante varios años, el ingeniero Guillermo González Camarena trabaja con el equipo que él mismo ha construido.

Para 1939, cuando la televisión en blanco y negro ya funciona en algunos países, González Camarena impacta al mundo al inventar la televisión en color, gracias a su “Sistema Tricromático Secuencial de Campos”.

109
En 1940, González Camarena obtiene la patente de su invento tanto en México como en Estados Unidos. Este sistema de televisión en color se empieza a utilizar con fines científicos.

El 19 de agosto de 1946 se lleva a cabo la primera transmisión en blanco y negro en México, desde el cuarto de baño de la casa número 74 de las calles de Havre en la capital del país, lugar de residencia del ingeniero Guillermo González Camarena. Fue tal el éxito, que el 7 de septiembre de ese año, a las 20:30 horas, se inaugura oficialmente la primera estación experimental de televisión en Latinoamérica; la XEIGC. Esta emisora transmite los sábados, durante dos años, un programa artístico y de entrevistas. En 1948 inician transmisiones diarias desde el Palacio de Minería de la "Primera Exposición Objetiva Presidencial". Miles de personas son testigos gracias a los aparatos receptores instalados en varios centros comerciales.

El 31 de agosto de 1950 se inaugura el primer canal comercial de televisión en México y América Latina, un día después, el 1 de septiembre, se transmite el primer programa, con la lectura del IV Informe de Gobierno del Presidente de México, Lic. Miguel Alemán Valdés, a través de la señal de la XHDF-TV Canal 4 de la familia O'Farrill.

En 1968 nuestro país incursiona en la era de las comunicaciones vía satélite, al transmitir a todo el mundo, los diversos eventos de la XIX Olimpiada México 68. 17 años después, en 1985, se colocan en órbita los primeros dos satélites nacionales de comunicaciones, Morelos I y II. En 1992 y 1993, se colocan otros dos satélites, Solidaridad I y II, con ellos, se utilizan las tecnologías más avanzadas en transmisiones radiofónicas y televisivas, principalmente, con capacidad para ofrecer servicios de telecomunicaciones a todo el territorio nacional y a 23 país del continente americano.

El 20 de mayo de 1969, la empresa Cablevisión S.A., filial de Telesistema Mexicano, obtiene la concesión para prestar el servicio de TV por cable en la
Ciudad de México, el cual se empieza a proporcionar un año después, en 1970. En mayo de 1980 Televisa contrata, con autorización de la Secretaría de Comunicaciones y Transportes, los servicios del satélite estadounidense Westar III con lo cual adquiere la posibilidad de cubrir el territorio mexicano, pues la huella del artefacto cubre nuestro país, y de transmitir directamente a Estados Unidos 19 horas diarias de programación a través de la cadena Spanish International Network (SIN) constituida por 100 estaciones afiliadas y de la que Televisa ha adquirido el 75 por ciento de acciones.

El 10 de octubre de ese mismo año la Secretaría de Comunicaciones y Transportes da a conocer que para 1985 México contará con su propio satélite que llevará el nombre de Iluicahua (“Señor del cielo” en lengua náhuatl). Hasta ese momento México realiza sus telecomunicaciones internas por microondas y las de carácter internacional utilizando satélites del consorcio Intelsat o satélites domésticos estadounidenses con cobertura en nuestro territorio.

El 3 de abril de 1981 el presidente López Portillo inaugura la primera etapa de la Red Nacional de Estaciones Terrestres, la cual consta de 14 estaciones para envío y recepción de señales vía satélite y 21 estaciones que sólo reciben señales.

En 1982 se crea la Unidad de Televisión Educativa y Cultural (UTEC), encargada de la producción y transmisión de programas educativos. El 23 de marzo de 1983 el gobierno de la república anuncia la creación de un organismo denominado Instituto Mexicano de Televisión bajo cuya responsabilidad queda el manejo de los recursos del Estado en esa área. El Canal 13 y su red nacional, los canales 22 del Distrito Federal, 8 de Monterrey, 2 de Chihuahua y 11 de Ciudad Juárez, la Productora Nacional de Radio y Televisión (PRONARTE) y la red Televisión de la República Mexicana (TRM) quedan a cargo del nuevo organismo.

En junio de 1983 la Secretaría de Comunicaciones y Transportes informa que el sistema mexicano de satélites llevará el nombre de Morelos (ya no Iluicahua,
como se le pretendía llamar en el sexenio anterior) y que estará constituido por
do dos artefactos que se colocaron en órbita en 1985.

En 1985 da inicio el proyecto de educación médica vía satélite denominado TV
Salud, promovido por el Hospital Infantil de México.

En 1989 la Unidad de Televisión Educativa y Cultural (UTEC) elimina de su
denominación la palabra "cultural" y reduce su nombre a UTE. Ello se debe a que
la producción de programas culturales pasa al dominio del Consejo Nacional para
la Cultura y las Artes creado ese mismo año. En adelante la UTE se ocupará sólo
de la producción de programas de tipo educativo.

En 1990, ante la proximidad de la finalización del período de vida útil del satélite
Morelos I, prevista para 1994, y la inminente saturación del Morelos II, cuyo lapso
de utilización llegará a su término en 1998, el gobierno de la república da a
conocer, el 28 de julio, su proyecto de ubicar en el espacio un nuevo sistema de
satélites, también integrado por dos artefactos, que llevará el nombre de
Solidaridad y cuya vida útil será de 14 años Se anuncia que el primero de los
satélites será enviado al espacio en 1993.

En 1992 la Unidad de Televisión Educativa (UTE) inicia la transmisión de la
Telesecundaria y otros programas educativos a través del sistema de satélites
Morelos. En 1993 pone en marcha su proyecto de transmitir teleconferencias a
diversas instituciones de educación en la república.

El 23 de junio de 1993 sale al aire una nueva televisora cultural: el Canal 22,
XEIMT. Aunque este canal operaba desde 1982 como parte del sector estatal de
television, su transformación en emisora cultural se remonta al 26 de enero de
1991 cuando un grupo de 800 intelectuales mexicanos publica en la prensa
nacional una carta abierta dirigida al presidente Carlos Salinas de Gortari
solicitándole que esa frecuencia no sea privatizada y se le destine, en cambio, a la
difusión cultural.
El 19 de noviembre de 1993 es lanzado al espacio desde Guyana Francesa, a bordo de un cohete Ariane, el nuevo satélite mexicano Solidaridad I, construido, al igual que sus antecesores, los Morelos, por la empresa estadounidense Hughes. También en 1993 se crea el Centro Mexicano de Educación en Salud por Televisión (CEMESATEL), de la Secretaría de Salud, que interconecta a hospitales e instituciones de este sector mediante videoconferencias, imágenes de intervenciones quirúrgicas y programas de educación médica.

El 7 de octubre de 1994, el satélite Solidaridad II es colocado en órbita. Construido también por la empresa Hughes Communications es enviado al espacio, desde Guyana Francesa, a bordo de un cohete de la compañía Ariane.

En 1994 se consolida la Red Satelital de Distribución de Televisión Educativa (EDUSAT), planeada desde 1989, mediante la cual se transmiten actualmente seis canales de TV educativa a 11 mil escuelas en todo el país a través del sistema Solidaridad.

2.11.3 Internet y computadoras en la educación.

Para Francisco Javier Sierra (2001), la introducción de la computadora en el ámbito educativo comienza desde 1963, cuando en algunas escuelas de los Estados Unidos, los equipos de cómputo se comenzaron a utilizar en un intento por incorporar esta tecnología a la enseñanza. Aún faltaban 12 años para que la primera computadora personal se vendiera al público. Sin embargo, el uso de los transistores que había hecho posible la segunda generación de computadoras (1959-1963), dio paso a la tercera generación (1964-1975) y el tamaño de las computadoras fue reducido considerablemente. Estos equipos procesaban la información por lotes (batch), es decir, los datos y los programas no eran cargados en la memoria principal de la computadora por el usuario, sino que éste tenía que esperar a que el operador de la computadora hiciera esta labor en algún momento del día o de la noche y los resultados del procesamiento eran entregados.
posteriormente. Por esta razón se dificultaba su uso en la enseñanza. En esa época, se desarrolló el BASIC, un lenguaje informático fácil de usar que permitía a los maestros universitarios entrenarse en la programación.

Dos años más tarde, algunas escuelas de primaria y secundaria en los Estados Unidos, tuvieron la oportunidad de poseer computadoras, que fueron utilizadas principalmente para la administración escolar.

La EAC.

Un año decisivo para el uso de la computadora en la escuela fue 1966, que marcó la culminación de un gran proyecto que se había iniciado en 1959. El Dr. Donald L. Bitzer inventó en la Universidad de Illinois el sistema PLATO (Programmed Logic for Automatic Teaching Operations) y junto con el Dr. Gene Slottow desarrollaron la Terminal PLATO IV.

En 1967, fue incorporado a este sistema un lenguaje de programación llamado TUTOR, que permitía preparar material didáctico para usarse directamente en la computadora. En esa época, cuando la televisión educativa había tomado una gran fuerza, aparecía este novedoso sistema que estaba constituido por una computadora y terminales en las que trabajaban los alumnos. Las primeras aplicaciones las promovieron los profesores de ciencias, quienes preparaban el material que se daba a los alumnos a través de la computadora. “Por ejemplo, en Biología, para explicar las leyes de la herencia a los alumnos, a cada uno se le presentaba en la terminal una familia de moscas que podían poseer algunos rasgos mutantes como ojos blancos, el tamaño de las alas, el color del cuerpo o rayas en él. La imagen de las moscas estaba formada por partes: cabeza, ojos, tórax, alas y abdomen y mediante una codificación rigurosa, la computadora podía presentar combinaciones características, de tal forma que al seleccionar el estudiante un apareamiento, en unos cuantos segundos se le presentaba toda su descendencia”.

114
“La computadora hacía una verdadera analogía del sistema biológico real mediante números al azar y se basaba en las leyes de Mendel”. Esto era la Enseñanza Asistida por computadora. Los experimentos se realizaban principalmente en las Universidades y los países que más participaron fueron Estados Unidos y Francia.

Con estos sistemas se desarrollaron lecciones no sólo de biología, sino de química, física y matemáticas y permitieron experimentos en los que incluso los niños aprendieran los fundamentos de la programación, con un lenguaje con diez instrucciones para gobernar un muñeco en la pantalla.

Aunada a la complejidad de los equipos, también la programación era costosa. Podría uno pensar que si la computadora le preguntaba al estudiante una ecuación, la selección se hacía de una lista de posibles respuestas. Sin embargo, esto no era así. Mediante algoritmos, la computadora podía valorar la ecuación propuesta por el estudiante y en caso de ser incorrecta, le presentaba ejemplos en los que mostraba que los resultados obtenidos con tal ecuación podrían ser absurdos o ilógicos. Si la ecuación del estudiante resultaba algebraicamente correcta pero con la posibilidad de simplificarse, también lo podía detectar la computadora mediante sus algoritmos y podía proponer una expresión equivalente más sencilla.

Todavía en 1968, el uso de la computadora en las escuelas presentaba grandes dificultades porque seguía vigente el procesamiento por lotes y esto impedía a los maestros convertirse en los operadores directos de la máquina.

Al cumplirse los primeros veinticinco años de la historia de las computadoras electrónicas, la programación se había convertido en una tarea difícil en la que los programas, cada vez más grandes eran al mismo tiempo, cada vez más confusos y frecuentemente, fuentes de enorme frustración y de pérdidas multimillonarias si se cometían errores. Surgieron nuevos avances que desembocaron en la llamada Programación estructurada que obligaba a programar con más disciplina.
En 1970 se creó el lenguaje Pascal y algunas universidades comenzaron a utilizar la computadora en la enseñanza de este lenguaje en un intento por sustituir el BASIC para aprovechar los beneficios de la Programación Estructurada.

En 1972, en una reunión convocada por la UNESCO y por el Comité de Enseñanza de la Ciencia del ICSU (International Council of Scientific Unions), en París, destacaron dos trabajos. Uno fue el uso de las primeras videocaseteras para fines educativos; el otro, fue la demostración del sistema PLATO conectado desde las terminales de París hasta la computadora en Illinois. Este sistema contaba ya en dicha universidad, con 2,000 terminales y se estaba construyendo otro con 4,000 para 1974.

El campo de la electrónica venía desarrollando los circuitos integrados o microcircuitos desde 1963. En un principio, los circuitos integrados eran diseñados para cumplir con una sola función, por ejemplo, sumar, o retardar una señal, o actuar como memoria principal, o comparar dos números. Sin embargo, los ingenieros aprendieron a fabricarlos más fácilmente y tuvieron la idea de construir sistemas electrónicos que pudieran realizar varias funciones. Estos circuitos llegaron a contener hasta 6000 transistores y podían realizar operaciones como la suma, la resta, la multiplicación y la división. Rápidamente, esta tecnología se popularizó y con 15,000 transistores en un circuito, los ingenieros electrónicos lograron acomodar las funciones de una computadora en lo que se conoce con el nombre de microprocesador. Surgieron las primeras calculadoras electrónicas de bolsillo y surgieron también las computadoras de la cuarta generación y en 1975, las computadoras personales.

Con el advenimiento de las computadoras personales, se inicia también una nueva era en el uso de las computadoras en las escuelas.

En 1980, Seymour Papert da a conocer una serie de reflexiones sobre el uso de la computadora en la educación y promueve el lenguaje LOGO. Las hipótesis de Papert son dos: los niños pueden aprender a usar computadoras y este
aprendizaje puede cambiar la manera de aprender otras cosas. En esa década, el uso de las computadoras en la escuela se ha extendido no sólo en los Estados Unidos sino en Europa. Sin embargo, los maestros no están tranquilos, unos piensan que es un medio excesivamente complejo, otros sienten desconfianza. Surge el mito de que es necesario saber programación y se produce un distanciamiento entre los maestros y las computadoras. Los pocos resultados publicados sobre el uso de la computadora en las escuelas, muestran que se dio un fenómeno doble: los centros educativos de clase media-baja utilizaban la computadora con programas educativos que eran dados con la computadora, mientras que los centros de clase media-alta se distinguieron por el interés en programar.

Durante la década de los noventa se desarrollaron los sistemas operativos con ambientes gráficos y los programas de aplicación dirigidos principalmente al procesamiento de textos, al cálculo matemático mediante hojas electrónicas, al manejo de bases de datos y los sistemas multimedia capaces de incluir imágenes, sonido, vídeo.

En México.

Los primeros indicios del uso de computadoras en la educación datan de 1978. La academia de la Investigación Científica daba los primeros pasos para que los niños usaran las computadoras mediante su programa "Domingos en la Ciencia". En la Universidad Nacional Autónoma de México, la Secretaría de Educación Pública, el Instituto Politécnico Nacional y la Fundación Arturo Rosenblueth existían grupos de investigación que se dedicaban a estudiar la interacción de los niños con las computadoras.

Las expectativas de que el empleo estuviera fuertemente orientado hacia la tecnología informática, impulsaron a algunos países a instalar una gran cantidad de computadoras en las escuelas. En México, las aspiraciones que se tenían para
utilizar las computadoras en el ámbito educativo se tornaron más reales a partir de 1984, cuando fue posible adquirir computadoras personales a precios razonables. Ese año, se llevó a cabo el "Primer Simposio Internacional La Computación en la Educación Infantil" en México, organizado por la UNAM y la Academia de la Investigación Científica.

Aunque el sistema PLATO fue un antecedente muy importante, el costo elevado de las terminales gráficas lo hizo poco accesible. Sin embargo, las versiones del LOGO de Papert para computadoras personales permitieron su utilización para los alumnos más pequeños, mientras que el BASIC, se consideró apropiado para los adolescentes y los jóvenes. Muchos de los trabajos presentados en el "Primer Simposio Internacional de Computación Infantil" hacían referencia al uso de estos dos lenguajes.

Por estos motivos, la primera tendencia que se observó en la incorporación de la informática a la escuela fue el surgimiento "Laboratorios de Computación" (principalmente en las escuelas privadas) y el uso del LOGO y del BASIC. En la mayoría de los casos, el maestro fue ignorado, puesto que quienes decidían si se compraban o no computadoras eran los directores y los padres de familia; y generalmente se contrataba un ingeniero para que diera las "clases de computación" sin tomar en cuenta la opinión de los maestros. Un buen día, en la escuela había entrado la computadora. Los maestros se sintieron atrapados por la tecnología informática y la mayoría decidieron ignorar sus posibilidades, otros se animaron a usar pasivamente las computadoras y los menos decidieron aventurarse a explorar las posibilidades reales para mejorar su práctica docente.

En un segundo momento (1985-1990), la SEP encomendó al ILCE (Instituto Latinoamericano de la Comunicación Educativa) el desarrollo de un modelo pedagógico y la dotación de computadoras para las escuelas públicas, así como el desarrollo de programas educativos. En 1986 se inició el proyecto COEEBA-SEP (Computación Electrónica para la Educación Básica) en su etapa experimental y que tenía como objetivo la instalación de 30,000 computadoras para ser usadas
en los grupos de tercero de secundaria, con dos modalidades: como apoyo didáctico en el salón de clases y para la enseñanza del LOGO y el BASIC. En octubre de ese año, se definieron los modelos para el desarrollo de programas educativos para las áreas de: Español, Matemáticas, Ciencias Naturales y Ciencias Sociales.

En junio de 1989, el proyecto COEEBA-SEP había capacitado a más de 31,000 maestros, atendía a más de un millón de alumnos en más de 4,700 planteles y había distribuido más de 5,000 computadoras. Además, se habían instalado 35 Centros COEEBA-SEP para capacitación y soporte técnico y se habían desarrollado 297 programas de apoyo didáctico para todos los grados de secundaria.

En 1990, el ILCE había terminado la investigación para el diseño de un modelo pedagógico para el uso de la computadora en primaria y lanzó una convocatoria para el Concurso Nacional de Guiones para Programas Educativos Computacionales. Para 1994 la SEP introdujo en los Programas de Secundaria la asignatura "Educación Tecnológica en Computación". Por su parte, la UNAM incorporó para el primer año de Preparatoria la materia de "Informática".

A partir de 1996, el Gobierno Federal apoyó el establecimiento de aulas con infraestructura de cómputo y telecomunicaciones y así nació "Red Escolar". Actualmente, el modelo educativo de Red Escolar es la educación a distancia mediante programas de televisión y el uso de computadoras conectadas en red. La señal de televisión se distribuye a través de Edusat y la red de computadoras está conectada a través de Internet.

Actualmente, el uso de la computadora en la escuela se ha convertido en un asunto de gran importancia por la cantidad de computadoras instaladas y ha mantenido las dos tendencias del modelo COEEBA-SEP, es decir, se atiende tanto a la instrucción en temas propios de la tecnología informática, así como el uso de la computadora como auxiliar didáctico.
A pesar de las grandes dificultades para conseguir o desarrollar programas educativos, la computadora es un instrumento valioso para apoyar los procesos de enseñanza-aprendizaje y cada día hay más aplicaciones en Informática Educativa como Enciclopedias Interactivas, programas para hacer mapas conceptuales, programas para desarrollar habilidades en pensamiento estratégico y programas multimedia interactivos para la enseñanza de matemáticas.

¿Qué nos ofrece Internet?

Internet es en esencia un medio de comunicación que rompe barreras de distancia y de tiempo. Con las páginas Web se puede tener información desde cualquier parte del mundo y el correo electrónico permite la comunicación de una persona con otra sin importar la distancia y sin necesidad de que las dos personas estén conectadas a Internet al mismo tiempo. Además, en Internet existen otros servicios como los grupos de discusión en los que una persona se puede comunicar con todo un grupo y hay forma de compartir documentos que pueden contener texto, ilustraciones, fotografías, animaciones, audio y video.

Como sabemos, uno de los elementos básicos de la enseñanza-aprendizaje es la comunicación. El alumno se comunica con sus compañeros y con el maestro, pero también se comunica con el contenido del curso a través de los libros y las notas y se comunica con sus amigos cuando los consulta para aclarar alguna duda o para obtener información que necesita para su curso. Cuando estas necesidades de comunicación pueden ser atendidas no solamente con los medios tradicionales del habla y la escucha y los medios impresos, sino que se aprovechan las características antedichas de la comunicación electrónica a través de Internet, la enseñanza-aprendizaje se ve fortalecida.

Sin embargo, el uso de Internet debe estar considerado en el diseño de las actividades de aprendizaje, como parte de un proceso en el que los alumnos van aprendiendo las diferentes aplicaciones, sus ventajas y sus riesgos, con los
mismos criterios que otros aspectos de la informática, es decir, tomando en cuenta el nivel de desarrollo cognoscitivo y la perspectiva de enseñanza que se persiga.

Internet en nuestros días es una infraestructura informática ampliamente extendida. Su historia es compleja, pues comprende aspectos: tecnológicos, organizacionales y comunitarios. Su influencia alcanza, tanto al campo técnico de las comunicaciones computacionales, como a las sociedades en la medida en que nos encaminamos hacia el aumento en el uso de las herramientas online para realizar el comercio electrónico, la adquisición y/o intercambio de información; así como la acción comunitaria.

Internet ha cambiado en sus dos décadas de existencia. Fue concebida en la era del tiempo compartido y ha sobrevivido en la era de las computadoras personales, cliente-servidor, y los network computers. Se ideó antes de que existieran las LAN (Local Area Network), pero ha acomodado tanto a esa tecnología como a ATM (Asincronic Transfer Mode) y la conmutación de tramas. Ha dado soporte a un buen número de funciones desde compartir ficheros, y el acceso remoto, hasta compartir recursos y colaboración, pasando por el correo electrónico y, recientemente, el World Wide Web. Pero, lo que es más importante, comenzó como una creación de un pequeño grupo de investigadores y ha crecido hasta convertirse en un éxito comercial con miles de millones de dólares anuales en inversiones.

Aunque es una red por su propia denominación y por su dispersión geográfica, su origen está en las computadoras, no en la industria de la telefonía o la televisión. Puede y debe continuar cambiando y evolucionando a la velocidad de la industria de la computadora si quiere mantenerse como un elemento relevante.

Ahora está cambiando para proveer nuevos servicios como el transporte en tiempo real para soportar audio y video. La disponibilidad de redes penetrantes y omnipresentes, como Internet, junto con la disponibilidad de potencia de cálculo y comunicaciones accesibles en máquinas como las computadoras portátiles, los
PDA (Packet Assembler Disassembler) y los teléfonos celulares, está posibilitando un nuevo paradigma de informática y comunicaciones "nómadas".

2.12 Modelos educativos y modelos comunicacionales.

La introducción de las NTIC y aceptación de estas en el campo educativo, se debe en gran parte a la revolución ideológica que ha tenido a bien la educación, reflejada en los modelos educativos. El innovar nuevas formas de enseñanza-aprendizaje aunado a la imposición tecnológica en que vivimos, da como resultado que los expertos en el área educativa, propongan y mejoren los métodos para recibir educación y con el afán de mejorar cada vez más la educación; permitir la inclusión de los medios y herramientas que surgen en el momento.

Los modelos nos van a permitir notar generalidades para comprender la utilidad o inutilidad de las ideas de un autor o de una teoría, sin que ello implique calificarlos como falsos o verdaderos.

Para weber (1969), un modelo es útil como herramienta analítica para organizar y explicar relaciones de un conjunto histórico o de hechos o acontecimientos y así entender sus interrelaciones, mas no pretende definir de una vez por todas, una realidad o una corriente teórica, para ello es ahondar en su estudio.

Para identificar la esencia comunicativa en las corrientes educativas, se presentan a continuación los tres modelos más representativos, esto parafraseando al autor Del Corral Aurora (2004)

2.12.1 El modelo tradicional.

En este modelo, subyace la idea de que el aprendizaje se adquiere de manera intuitiva a través de los sentidos. En este modelo, el maestro tiene el papel de organizar, conducir y controlar un proceso lineal de traspaso de información, donde él es el que piensa, sabe y ejecuta la acción de manera autoritaria; mientras
que el alumnos corresponde el rol que no sabe, debe escuchar en silencio, pensar lo mismo que piensa el maestro y actuar cuando el maestro se lo permita, sometiéndose dócilmente y adaptándose a una situación aparentemente natural e incuestionable.

Por lo tanto el alumno es considera como un ser moldeable, pues sus capacidades se circunscriben a las de ser un receptáculo y repetidor de la información; en este sentido se considera más educado al hombre que más adaptado esté, mayor información retenga y reproduzca fielmente.

El hecho educativo se limita a una mera transmisión del conocimiento del docente hacia el alumno. El concepto de educación es el de educación bancaria, que pone énfasis en la cantidad de conocimientos que el sujeto puede asimilar como sinónimo de consumir y nutrirse intelectualmente.

En el esquema de comunicación vertical se identifica al docente como emisor, al alumno como receptor pasivo, y a los contenidos de enseñanza como el mensaje. La transmisión del mensaje tiene un solo sentido, del emisor al receptor como elemento terminal del proceso comunicativo. Se niega al receptor discutir con el mensaje, dado que se le considera como “ignorante” y por lo mismo no puede discutir.

En la educación, se ha reconocido que es importante lo que se aprende que el cómo se aprende, y la forma de interacción de los sujetos implicados en ello. Según Rodolfo Bohoslavsky (1975), en la relación educativa, se desarrolla entre maestro y alumno un vínculo de dependencia, donde el maestro define el tipo de comunicación con sus alumnos, ya que él es quien determina el espacio, el tiempo y los roles que corresponden a cada uno. Del corral Aurora (2004).

Esta concepción educativa proviene de Platón y Aristóteles. Originalmente, la escuela para los griegos era el momento y el espacio de ocio, dedicado a la reunión para pensar y filosofar en las verdades universales, aunque luego formalizaron las escuelas y las volvieron planificada y rígida.
La educación se caracterizaba por la autoridad del maestro, cuya función era impartir con conocimiento su asignatura, sin importar las diferencias individuales ni los intereses de sus alumnos.

Los primeros medios instrumentales utilizados en la escuela fueron el estilete y la tablilla, los alumnos sentados en bancos con sus instrumentos recitaban las lecciones de preguntas y respuestas.

En el siglo XVI aparecieron los cuadernos y en el siglo XVII, con la invención de la imprenta, se formalizó el libro de texto que permitió uniformar la enseñanza.

Este modelo también es llamado unidireccional o vertical porque la comunicación fluye solo del emisor al receptor, dejando al receptor como únicas posibilidades de respuestas la aceptación o el rechazo del mensaje, pero en silencio.

Del Corral Aurora citando a Freire, indica que este menciona que la educación bancaria dicta ideas, no hay intercambio de ideas. No debate o discute temas. Trabaja sobre el educando. Le impone una orden que él no comparte, a la cual se acomoda. No le ofrece medios para pensar auténticamente, porque al recibir las fórmulas dadas, simplemente las guarda. No las incorpora, porque la incorporación es el resultado de la búsqueda, de algo que exige de parte de quien lo intenta, un esfuerzo de re-creación, de invención. Del Corral Aurora (2004).

2.12.2 El modelo de la tecnología educativa.

La tecnología educativa buscó dar un carácter científico a la educación al sistematizar y especializar los procesos a través de una visión “tecnocrática” de planificación, evaluación y retroalimentación.

En este modelo, se aplica principalmente el enfoque sistémico de la administración y el uso de medios de comunicación (radio y televisión sobre todo), lo cual haría eficientes los procesos educativos a través de medidas de control, seguimiento y retroalimentación.
Este modelo, concibe al aprendizaje como un cambio de conducta observable, medible y relativamente duradero; el proceso enseñanza-aprendizaje es de tipo longitudinal o mejor dicho: entrada-proceso-salida, con supuestos de objetividad sobre los productos esperados.

Uno de los planteamientos de la tecnología educativa es el de otorgar un papel activo al estudiante, así el maestro desaparece del "centro de la escena".

El esquema de comunicación que corresponde a este modelo, también es verticalista, donde el rol del emisor lo tiene un medio básico y autosuficiente (medio-maestro) y como apoyos complementarios están otros medios y hasta el mismo maestro como tutor. Así la exposición del maestro es complementada y en ocasiones sustituida por algún medio.

El mensaje en este esquema siguen siendo los contenidos explícitos de la enseñanza, solos que estos se conciben institucional y socialmente como asépticos, neutrales y científicos. Con la introducción de los medios en el campo educativo se sofistican las formas de expresión del emisor, sin embargo el alumno mantiene el papel de receptor pasivo del mensaje, y el proceso de enseñanza-aprendizaje sigue siendo la transmisión de información.

Una falsa creencia en la utilización de la tecnología aplicada a la educación, es considerar que el medio garantiza por sí mismo el aprendizaje, lo cual lleva a sobrevalorar el medio y convertirlo en el fin mismo.

Este modelo de tecnología educativa nació en Estados Unidos en la década de los 40, como una necesidad para hacer eficientes los procesos de adiestramiento militar, generalizándose a todos los procesos educativos. Del Corral Aurora (2004).

Para la década de los 60, el modelo se implantó en América Latina como la opción modernizadora que respondería a los problemas del subdesarrollo a través del progreso tecnológico en la educación. La educación se instrumentó con las
tecnologías de comunicación, que eran vistas entonces como la panacea pues gracias a su amplia cobertura podían lograr progresos espectaculares.

El modelo, desde luego, alcanza el cambio propuesto; las nuevas conductas que se adquieren sin la conciencia autónoma del educando mediante un proceso mecánico, no reflexivo, inconsciente, y por lo tanto condicionado, moldeado externamente por el educador, a quien corresponde proveer el estímulo y la recompensa adecuados.

Los fines del proceso de comunicación educativa en la tecnología de la educación ya no son solo informar o transmitir conocimientos, sino sobre todo persuadir, convencer al educando para que adopte determinadas conductas.

El esquema de comunicación emisor-receptor se tornó bidireccional, ajustándose a una concepción funcionalista de la comunicación y de la información, donde la respuesta buscada es solo de aceptación social del mensaje.

Como manifestaciones de este tipo de comunicación se pueden mencionar:

- Los adiestramientos de tipo técnico profesional.
- La enseñanza o instrucción programada de las máquinas de enseñar.
- Las dinámicas de la educación a distancia.
- La evaluación por criterios, basada en objetivos preestablecidos y en la utilización de pruebas objetivas, como el examen de opción múltiple.
- Los medios de comunicación masiva: radio, tv, presan, etc. Cuando son utilizados con fines de manipulación pública.

Como era de esperarse, entre sus principales efectos secundarios están:

- La habituación de ser dirigido en cada paso del proceso educativo, porque ya esta predeterminado y se puede ahorrar tiempo y esfuerzo en equivocaciones.
La competitividad entre compañeros, fomentada por la dinámica de alcanzar la recompensa y el éxito individual.

Los valores mercantiles y utilitaristas en la relación educativa, que se generalizan a las demás relaciones sociales: en la búsqueda del éxito material, individual y lucrativo.

Los alumnos, al hacer a un lado sus referentes y su contexto, quedan desarraigados no solo de su entorno, sino de su identidad cultural.

Se inhibe la conciencia crítica y la creatividad, ya que se evita el conflicto y solo se aceptan las respuestas correctas.

Pero también la tecnología educativa tiene ventajas; la instrumentación y la planificación en la educación es una de ellas.

El docente también debe hacer consciencia sobre el modelo que emplea, pues al rechazar la pedagogía tradicional, caen inconscientemente en esta otra versión tecnificada, ya que en el afán de evitar el rol de autoritarios, toman el papel de persuasivos.

Es difícil sustraerse del uso de este modelo ya que, es efectivo en la formación de hábitos y porque suele pensarse que si todos pensáramos igual, habría mayor comprensión entre los hombres y estaríamos en paz.

Con este modelo, nos damos cuenta que la tecnología educativa no solo está en las aulas, sino que es quizá el modelo de mayor ocurrencia, y a pesar de que en la actualidad se cuestiona el auge tan fuerte de la nuevas tecnologías de la comunicación, que generan la llamada sociedad de la información y se han puesto al servicio de la educación, tiende a proporcionarle un nuevo impulso.
2.12.3 El modelo problematizador o cogestionario.

Este modelo, tiene influencia de la didáctica crítica, la cual cuestiona a la tecnología educativa, mas no trata de cambiar una modalidad técnica por otra; simplemente plantea analizar críticamente la práctica docente, la dinámica de la institución, los roles de sus miembros y el significado ideológico que subyace en todo ello.

Esta postura de carácter contestatario a la tecnología educativa dio pauta para analizar el fenómeno educativo desde diferentes orientaciones filosóficas, psicológicas y sociales, dando origen a la tendencia educativa actual que se construye con aportaciones del constructivismo, que es denominada “problematizadora o cogestionaria”.

En esta tendencia educativa es el estudiante quien asume la parte activa como condición esencial para el aprendizaje; el énfasis esta puesto en el proceso y en la interacción didáctica entre las personas y su realidad.

El aprendizaje no es un proceso lineal que ocurra sin obstáculos, sino que procede con avances, retrocesos, saltos, angustia al cambio, etc., los cuales son consecuencia de los procesos de asimilación, acomodación y adaptación de las estructuras cognitivas del individuo en constante evolución.

En esta tendencia educativa se abre la posibilidad a docentes y alumnos de ser creativos y participativos en el proceso de enseñanza-aprendizaje, se exaltan los valores comunitarios, la solidaridad, la cooperación y la creatividad, sin temer a la ambigüedad o a la pluralidad de pensamiento.

Los materiales audiovisuales que se utilizan en el proceso no son sólo instrumentos para reforzar la información, sino que pretenden la motivación o la reflexión crítica, la generación del debate.

El modelo educativo problematizador tiene sus raíces en las ideas progresistas de Rousseau, en el siglo XVIII y Dewey en el siglo XIX. En Latinoamérica la ideas de
Freire son básicas para el desarrollo de la llamada forma alternativa del modelo educomunicativo. Del Corral Aurora (2004).

Rousseau rechazó la postura rigurosamente intelectual y abogó por la abolición de la educación formal basada solo en libros: propuso que el niño debería aprender de acuerdo con el proceso interno de su desarrollo, a su propio paso y en un ambiente práctico. Dewey por su parte, rechazó el dualismo mente/cuerpo. La educación según él, de principios de siglo XX era insignificante; la psicología del niño había sido violada, la integridad del ser humano había sido anulada por la separación violenta del cuerpo en los procesos educativos. Sostenía que la educación tradicional debía erradicarse porque estaba fundada en el alumno dependiera de la mente y la voluntad de otro, y este procedimiento no llevaría a los jóvenes a ser participativos y constructores de una democracia que levara a un mundo mejor para todos. Del Corral Aurora (2004).

Un aspecto fundamental en este modelo, en comparación con los otros dos anteriores, es el cambio de actitudes: del individuo acrítico al individuo crítico, del pasivo al participativo, del individualista al solidario. Actitudes que solo se pueden lograr por vía de un proceso libre, en el que el pensamiento sea cada vez más autónomo y en el cual la comunicación es entendida como la interacción, el diálogo, el intercambio comunitario y solidario entre interlocutores, profesores y sobre todo alumnos hablantes.

A pesar de esta tendencia actual, son muchas las aulas mexicanas que aun reproducen modelos educativos y comunicacionales de tipo tradicional y verticalista como resultado de múltiples circunstancias, que van desde las condiciones institucionales que determinan quien detenta el poder y ejerce la autoridad, las limitaciones de espacios y recursos, hasta la situación gratificante de reproducir como docente un rol histórico asimilado y aceptado socialmente.
2.13 La educación antes de las NTIC.

Como hemos visto, la tecnología se hizo presente en nuestras vidas sin que nos diéramos cuenta, y hoy, que surgen lo que llamamos NTIC y tienen gran implicación en el ámbito educativo, probablemente nos sea un poco difícil diferenciar entre la tecnología tradicional y la nueva, entre métodos de enseñanza-aprendizaje y en general cómo se recibía la educación sin la dependencia tan marcada que podemos notar hoy en día de la tecnología educativa.

Habiendo consultado una antología de la SEP (1976), brevemente, explicaré, remontándome a la década de los 80 y basándome en 4 grupos de preguntas, una idea de cómo era la educación antes de las NTIC en México:

¿Cómo eran las instalaciones físicas para aprender?

El ambiente donde se aprende, influye de muchas formas sobre las ejecuciones de alumnos y maestros; por ejemplo, los espacios fijos, con muebles y muros inmóviles, suelen entorpecer los métodos de enseñanza destinados a alcanzar los objetivos de los planes de estudio. Por el contrario, los espacios bien equipados, modificables y funcionalmente variables, liberarán pensamiento y acción, confiriendo la valiosa flexibilidad indispensable para una gran parte de la enseñanza moderna. La siguiente lista de instalaciones para aprender, demuestra los recursos físicos que solía haber (y que aún existen) en las escuelas:

- Salones de conferencia
- Aulas (divisibles y sin dividir)
- Áreas de estudio independientes
- Salones para discusión
- Laboratorios
- Talleres
Teatros
Bibliotecas
Centros de recursos
Centros electrónicos de aprendizaje
Campos de juego
Recursos de la comunidad
Centros de estudio en el hogar

¿Cuál era el equipo utilizado para aprendizaje?

El maestro indudablemente, concibe su propio papel como transmisor de la información, al desempeñarlo, el maestro habla y se comunica. Para que las comunicaciones tengan significado ante los alumnos, el maestro se enfrenta a la necesidad de utilizar medios como el pizarrón, transparencias, filminas, tableros de avisos y toda clase de auxiliares para sus exposiciones. La siguiente lista nos enseña qué era considerado (y qué equipo existía) como equipo para aprender:

- Tocadiscos, grabadoras, radios
- Proyectores y visores de transparencias y filminas
- Retroproyectores
- Proyectores y visores de películas
- Receptores de televisión
- Grabadoras, ejecutoras y visores para videocinta
- Máquinas para la enseñanza
- Terminales de computadoras y reproductoras de impresos e imágenes
⊗ Laboratorios electrónicos: acceso/audio/video e instrumentos de interacción.
⊗ Teléfonos con o sin otros accesorios de medios.
⊗ Sistemas de microimagen: microfilm, microtarjeta, microficha.
⊗ Equipo duplicador y de copiado
⊗ Cámaras: de cine y fotos fijas.

¿Cuáles eran los medios educativos utilizados para aprender?

Para saber si el objetivo definido en un principio se logró, es necesario que el docente realice una evaluación. Sin lugar a dudas, la evaluación no sólo reflejaría el desempeño del estudiante, sino también daba paso a la interrogante de: ¿el medio que se utilizó para el aprendizaje es el correcto?, ¿es necesario cambiar los recursos?, encontrando que, entre las opciones que podía escoger o combinar, se contaban con:

⊗ Libros de texto y complementarios.
⊗ Libros de consulta, enciclopedias.
⊗ Revistas y periódicos.
⊗ Documentos, recortes.
⊗ Materiales duplicados.
⊗ Materiales programados (autoinstrucción)
⊗ Películas de cine.
⊗ Programas de televisión.
⊗ Programas de radio.
Grabaciones (en cinta y disco).

Imágenes planas.

Dibujos y pinturas.

Transparencias grandes y chicas.

Filminas.

Microfilmes, microtarjetas.

Estereógrafos.

Mapas, globos terráqueos

Gráficas, cuadros, diagramas.

Carteles

Caricaturas.

Títeres.

Modelos, simulaciones.

Colecciones, especímenes.

Materiales para franelógrafo.

Materiales para pizarrón magnético.

Materiales para pizarrón.

Materiales de dibujo.

Materiales de exhibición.

Equipos de multimedios.
¿Cuáles eran los recursos individuales de aprendizaje?

Por último y para complementar la enumeración de los medios-recursos con que se contaban hace unas décadas; me parece importante hacer mención de aquellas opciones individuales que el alumno ocupaba como apoyo para obtener conocimiento, ya sea dentro o fuera del aula. Entre estos recursos encontramos:

- Leer libros de texto.
- Estudiar libros de consulta.
- Leer libros de ensayo.
- Consultar libros de ficción.
- Leer folletos.
- Escuchar grabaciones en cinta.
- Ver transparencias.
- Estudiar imágenes.
- Escuchar discos.
- Estudiar materiales de enseñanza programada.
- Ver filminas.
- Estudiar publicaciones periódicas.
- Estudiar modelos y objetos.
- Ver programas educativos de televisión.
- Ver transparencias de 35 mm.
- Ver transparencias de imágenes microscópicas.
Trabajar con equipos de autoenseñanza.

Escribir informes.

Hacer informes orales.

Producir materiales de aprendizaje.

Estudiar cuadros.

Ver gráficas.

Estudiar mapas.

Ver películas.

Realizar exámenes autoadministrados.

Participar en conferencias de enseñanza entre alumnos.

Entrevistar personal de recursos educativos.

Participar en discusiones de grupos pequeños.

Realizar experimentos.

Jugar juegos educativos.

Usar el teléfono amplificador.
2.14 Nuevas Tecnologías frente a la educación.

Parafraseando a Aguiar Perera (2002) Quizá la sociedad moderna todavía no se constituye con la idea de una aldea global (se va produciendo gracias a los avances tecnológicos que van logrando que las culturas del primer mundo se conviertan en una sola cultura común como sinergia de sus componentes, aldea global donde las tecnologías han hecho que las culturas del primer mundo sean conocidas por los miembros de un tercer mundo, y quieran asemejarse y disfrutar de sus bondades, ya sea en sus lugares de origen con todas sus limitaciones, o ya formando parte de la ola actual de inmigraciones al primer mundo, pero es una realidad el hecho de que el conocimiento universal, así como la capacidad de una persona para apropiarlo en su vida cotidiana y profesional, se encuentran a su alcance si dispone de esta poderosas herramientas. No es una exageración afirmar que un individuo ajeno a la conceptualización de los nuevos paradigmas de la información se encuentra en tanta desventaja hoy, como el analfabeto de ayer. Mas aun, la capacidad de un país para integrar el dominio de las nuevas tecnologías en el proceso educativo, frente a las demandas de competitividad en una economía global es un imperativo ineludible.

En consecuencia, el sistema educativo está obligado a la incorporación de las nuevas tecnologías para preparar a niños y jóvenes en las destrezas y habilidades que demanda la sociedad actual. Este reto tiene dos aspectos. Uno de ellos se refiere a las necesidades, formas, métodos y equipos que requieren las escuelas para introducir las tecnologías de la información y comunicación en el propio proceso educativo. Evidentemente el manejo de destrezas relacionadas con el uso de las computadoras es un elemento importante en la formación del estudiante. Es difícil concebir la inserción de individuos sin estas destrezas en el mercado laboral con las características que se apuntaron. Pero la evolución tecnológica de la información y comunicación tiene ya una dinámica propia y existe un consenso entre los actores del proceso educativo para atender esta demanda. El segundo aspecto, se refiere al uso y relevancia de estas tecnologías como instrumentos de
aprendizaje. El objeto de poner énfasis en esta cuestión se vincula con el enorme potencial del aprendizaje que representan las nuevas tecnologías.

En la actualidad, la capacidad de crear, asimilar y procesar conocimiento es una competencia estratégica en la economía de las naciones. Por primera vez en la historia, los conocimientos que un profesionista aprendió en la universidad serán obsoletos pocos años después de su graduación. Esto implica que los niños deberán formarse con las capacidades para adquirir nuevos conocimientos, resolver problemas diferentes y desarrollar formas críticas de pensamiento. En otras palabras, el proceso enseñanza-aprendizaje debe transformarse en un desarrollo del estudiante centrado en el objetivo de “aprender a aprender”. Estos cambios en los modelos pedagógicos tradicionales conducen a la construcción de un paradigma “constructivista” de la educación. Este marco conceptual subraya la formación del estudiante a través del desarrollo de habilidades en su manera de pensar, en lugar de sentarla en la transmisión de un gran número de hechos aislados que frecuentemente al alumno debe memorizar.

Para ello el estudiante tiene acceso a las fuentes de información en el momento en que las necesita, por lo que asume un papel central en el diseño de su propia formación, en lugar de adoptar una actitud pasiva frente a la información que le transmite el maestro.

Muchos investigadores de la educación están convencidos del enorme potencial que ofrece las tecnologías de la información, no solo para mejorar la eficacia de los métodos actuales de enseñanza sino también para inducir cambios fundamentales en esos métodos. Aun cuando no se cuenta con estudios formales sobre la evaluación de las tecnologías de la información en el aprendizaje, durante la última década se han reportado por ejemplo en estados unidos varias experiencias que justifican la adopción de estos instrumentos en virtud de los aumentos sensibles en los promedios, la eficacia del aprendizaje y el rendimiento del estudiante.
En particular, es importante mencionar que los efectos del uso de tecnologías de computación en diferentes escuelas con poblaciones marginadas dio como resultado un aumento significativo en los promedios de los estudiantes y una mejora substancial en otros indicadores.

El gran desafío educativo frente a las tecnologías de la información está en el diseño de contenidos y métodos pedagógicos que aprovechen integralmente las nuevas herramientas. No basta con poner a la disposición de los alumnos equipos de cómputo en el salón de clases, aun cuando estos sean de la mayor sofisticación. El desarrollo y la utilización de software educativo, el acceso a las redes de información y la adaptación de los contenidos curriculares para hacer uso efectivo de estas tecnologías representan la tarea más importante para los investigadores. Además este esfuerzo podría verse frustrado si no se acompaña de programas de preparación y apoyo para los maestros en el difícil camino de la aceptación, asimilación y uso de las tecnologías.

2.15 Mitos y realidades en la Tecnología Educativa.

La tecnología hace su aparición en el ámbito educativo como algo imprescindible pero al mismo tiempo temible. Hablar de los mitos y realidades que giran en torno a la tecnología educativa es hablar de lo que se cree que pasa o pasará, sin tener en “las manos” verdades que avalen lo que se dice.

Yo no quiero decir con esto que, por ejemplo; si uno de los mitos o realidades de la TIC en la educación es que, el alumno usando una computadora va a obtener un mejor rendimiento, esto no se verdad, o al contrario, lo sea; simplemente me parece que para aseverar o negar tal dicho, hay que basarse en investigaciones, por lo que únicamente voy a escribir lo que a consideración de los expertos es verdad y mentira sobre la tecnología educativa.
Referenciando a Litwin, Libedinsky, Liguori, Lion, Lipsman, Maggio, Mansur, Scheimberg y Roig (1995), encontramos que, algunos mitos son de la tecnología educativa son:

La tecnología y la técnica; el mito del eterno retorno.

Como primer punto, hay que aterrizar el significado de la palabra técnica. Para los griegos, esta no era sólo un medio o instrumento ya que es un estado que se ocupa del hacer, implicando una verdadera línea de razonamiento. La técnica comprende no sólo las materias primas, las herramientas, las máquinas y los productos, sino también al productor (un sujeto altamente sofisticado del cual se origina todo lo demás).

Pero esto en la actualidad solo es una idea, y como tal ha cambiado, pues en la producción industrial de hoy en día, importa el producto, y no su productor y sus patrones éticos, tal y como lo expresa Bookchin y Murray, 1993:

Para la mentalidad moderna, la técnica es simplemente el conjunto de materias primas, herramientas, máquinas y mecanismos que se precisan para producir un objeto utilizable. El juicio definitivo del valor de una técnica es operativo: se basa en la eficiencia, habilidad y costo. Esta concepción reduce la noción de técnica a los instrumentos y repercute en la tecnología, la cual es entendida como el uso del conocimiento científico para especificar modos de hacer las cosas de manera reproducible.

De manera que, este mito desaparecerá cuando la tecnología llegue a entenderse también como creación y potencialidad en el contexto educativo (formación que se reflejará en la sociedad), entonces se podrá decir se tiene una idea más completa de este concepto.

La idea de que solamente incorporar nuevos medios, producciones, herramientas e instrumentos en las escuelas generamos innovaciones pedagógicas.
Se cree que la incorporación de nuevas producciones tecnológicas a las escuelas es sinónimo de escuela de modernidad y es suficiente motivo para una reforma curricular, se tiene la sensación de que para adaptarse al mundo, hay que incorporar las últimas producciones, haciendo a un lado el verdadero sentido de la innovación tecnológica.

Cada escuela, como cada individuo es única, cuentan con diferentes proyectos educativos y con diversas metodologías y posibilidades de llevarlos a la acción.

Se debe considerar, que los actores de una escuela no sólo son consumidores, sino también son productores de tecnología: filmaciones educativas, guías para observar un video, programas televisivos educativos, software, incorporación del diario, etc. La tecnología no es solamente inventar un aparato nuevo, es cuestionar la tecnología hecha para la escuela y qué hace la escuela con las producciones tecnológicas. Es vincular tecnología y didáctica.

Por su parte, Aguiar Perera (2002), afirma que;

Otro de los mitos es la afirmación de que con la incorporación de las TIC a la educación, se puede alcanzar un modelo democrático de educación, que facilita el acceso a todas las personas. Educación-formación para todos.

La realidad es que si es verdad que las nuevas tecnologías y herramientas de comunicación arrojan beneficios y comodidades, estas no son para todos, pues basta considerar la situación geográfica o temporal en que se habita. La información tampoco está al alcance de todos a menos que no se quiera ver que existen limitaciones en cuanto al lugar de residencia o disponibilidad espacial. Respecto a éste último punto, cabe aclarar, además, que para recibir información tomando en cuenta que existe el Internet, todos deben contar con una conexión de este tipo, lo cual desafortunadamente no es así, por si fuera poco, el acceso a Internet de muchas páginas con ciertos niveles de calidad se ve restringido, haciendo más inaudita la falacia de que la educación llegó para todos con la introducción de las nuevas tecnologías.
Las tecnologías son neutrales y axiológicamente asépticas, pues los efectos ya sean negativos o positivos, beneficiosos o no, no dependen de ellas, sino de las personas que las utilizan y aplican. Las tecnologías son asépticas y se estropean en su utilización por las personas.

Como bien sabemos, la tecnología no solo transmite información; al mismo tiempo transmite valores y actitudes; aunque algunas veces no nos percatemos de ello. Las tecnologías no son neutrales, pues reflejan las posiciones ideológicas y sociales de la cultura en que fueron desarrolladas.

El situar a las TIC como un elemento mágico todopoderoso capaz de resolver los problemas educativos, es otro de los mitos; “mas”, “más impacto”, “más efectivo”, “más fácil de retener”.

Esto tiene que ver probablemente con una confusión de términos; el decir que con las TIC se pueda alcanzar un mayor impacto, lo cual quiere decir que; la información pueda llegar cuantitativamente a más personas, no significa que por ese acceso se tenga calidad en la información que se recibe.

El conocimiento que recibe un estudiante es el resultado de su interacción con el mundo en el que se desarrolla; de manera que lo que importa en este sentido no es cómo o de qué manera recibe esa información; sino qué hará con ella y cómo la procesa, orientación que no puede dar una TIC.

Otro de los mitos es el de “reducción de tiempo de aprendizaje” y “reducción de costos”.

Hasta ahora, no existe demostración alguna que indique que el hecho de trabajar en la red, o por trabajar con algún otro medio que le permita interactuar más; tenga consecuencias inmediatas sobre la reducción del tiempo necesario para el aprendizaje. El hecho de que la máquina trabaje rápidamente no quiere decir que nuestro proceso de aprendizaje tenga que asemejarse.
La reducción de costos... en un principio, como es sabido, la introducción de tecnologías en cualquier ámbito, implica una elevación de costos. Si consideramos que se necesitan realizar inversiones para la adquisición de la infraestructura necesarias en escuelas más el costo que representa la adquisición de material educativo de calidad, seguramente no encontraremos por ningún lado la reducción del costo.
2.16 Factores que inciden en la incorporación de las TIC en la enseñanza.

De acuerdo al Dr. Pere Marqués, existen factores tanto positivos como negativos, mismos que repercuten al momento de incorporar las TIC en la enseñanza.

<table>
<thead>
<tr>
<th>FACTORES POSITIVOS</th>
<th>FACTORES NEGATIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceso omnipresente de Internet en los centros (por medio de cable, wi-fi, etc).</td>
<td>Acceso deficiente a Internet en los centros.</td>
</tr>
<tr>
<td>Incorporación de "pizarras digitales" (ordenador conectado a Internet + video proyector) en las aulas de clase.</td>
<td>Inexistencia de puntos de acceso a Internet en las aulas de clase.</td>
</tr>
<tr>
<td>Existencia de salas de estudio multiuso con ordenadores y aulas de informática suficientes en los centros, buena intranet o plataforma virtual de centro.</td>
<td>Infraestructuras informáticas insuficientes en los centros (pocos equipos, solo aulas informáticas, inexistencia de salas multiuso).</td>
</tr>
<tr>
<td>Mejoras en la rapidez de Internet (ancho de banda) y acceso universal en todo el territorio.</td>
<td>Conexiones en general lentas (por problemas de infraestructuras o costo) y existencia de muchas zonas rurales sin conexión.</td>
</tr>
<tr>
<td>Reducción significativa del precio de las tarifas planas de acceso a Internet.</td>
<td>Tarifas de acceso a Internet cara.</td>
</tr>
<tr>
<td>Aumento del parque familiar de ordenadores (y de las conexiones a Internet).</td>
<td>Poca penetración de las TIC en los hogares.</td>
</tr>
<tr>
<td>Avance en la implantación de la “sociedad de la información” en todos los ámbitos y estratos sociales.</td>
<td>Implantación lenta y/o desequilibrada por sectores o territorios de la "sociedad de la información".</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Existencia de “filtros eficaces” que permitan bloquear el acceso a determinados contenidos.</td>
<td>Indefensión ante el acceso indiscriminado de cualquier internauta a todo tipo de contenidos.</td>
</tr>
<tr>
<td>Identificación de buenas prácticas en la utilización de Internet (y las TIC y medios masivos en general), que realmente faciliten a los profesores el quehacer docente.</td>
<td>Carencia de buenos modelos (potencia y eficacia didáctica + facilidad y eficiencia de aplicación) de uso educativo de las TIC.</td>
</tr>
<tr>
<td>Formación continua del profesorado en "didáctica digital" (uso educativo de las TIC) y buena preparación en "didáctica digital" de los futuros docentes en las Facultades de Educación.</td>
<td>Falta de formación del profesorado en "didáctica digital" y/o deficiente formación en "didáctica digital" de las nuevas generaciones de docentes.</td>
</tr>
<tr>
<td>Existencia de portales educativos con múltiples recursos educativos y orientaciones al docente en la selección de materiales y entornos para la enseñanza y sobre su uso en contextos concretos.</td>
<td>Inexistencia de estructuras de apoyo al profesor en la selección de los recursos educativos disponibles.</td>
</tr>
<tr>
<td>Creación de comunidades virtuales de profesores (por áreas y niveles) que les permitan estar en contacto, intercambiar</td>
<td>Tradicional aislamiento del profesorado.</td>
</tr>
<tr>
<td>experiencias, hacer preguntas.</td>
<td>Disponer de una buena "coordinación TIC" en el centro, que facilite al profesorado el uso de las instalaciones (aulas informáticas, salas multiuso...) y le asesore en lo que necesite sobre el uso educativo de las TIC.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>No disponer de una adecuada "coordinación TIC" en los centros ni un mantenimiento ágil de los equipos.</td>
</tr>
<tr>
<td>Apoyo de la Administración Educativa y de los equipos directivos de los centros.</td>
<td>Poco interés de la Administración Educativa y de los equipos directivos de los centros.</td>
</tr>
</tbody>
</table>
2.17 Software Educativo.

Al hablar de software educativo, además de preocuparse del contenido de este, es importante conocer el tipo de sw que existe, cuáles son las ventajas y desventajas que representa utilizar sw para el ámbito educativo y que utiliza como herramienta principal a la computadora. Las clasificaciones que aquí se presentan, serán de gran utilidad para comprender el tipo de contenido que puede tener un sw educativo, de igual forma, se podrá distinguir mediante conceptos, a qué tipo de sw pertenecen en un momento dado, los sw educativos que utilicemos; sw abierto, cerrado o híbrido.

2.17.1 Software abierto, cerrado e híbrido.

El uso de la tecnología no indica el uso de un software específico en el ámbito educativo, sino la aplicación de la tecnología en el proceso diario de aprendizaje.

Software es un término inglés genérico que designa al conjunto de programas de distinto tipo (sistema operativo) que hacen posible operar con la computadora. Diccionario de Informática e Internet (2000).

Como todos sabemos, existe el software abierto, el software cerrado y el híbrido y desde luego, personas que defienden a cada uno, y es que a pesar de que sea como sea el software trata de ser un apoyo didáctico, las pugnas se hacen presentes en cuanto a las propuestas para qué software se debe utilizar.

Veamos cuales son las características de estos, ventajas y desventajas y será hasta entonces, cuando considero que el lector sea capaz de sacar sus propias conclusiones.

Consultando a Fortes y Malo (1997), el software abierto, por lo general, no está diseñado para un grado escolar específico, mas bien, es el maestro el que diseña proyectos que son asequibles a los alumnos de determinado grado, que se aplican utilizando un software como herramienta de trabajo. Cabe señalar que el
resultado de la interacción alumno-computadora-maestro no lo establece el diseñador del software; es decir, el proyecto se desarrolló de acuerdo a los intereses y necesidades de los alumnos, quienes guiados por el maestro, claro esta, establecen cómo y para qué utilizar la computadora; (recordemos que son ellos quienes finalmente son susceptibles y receptores de cualquier información en el medio) no hay respuestas predeterminadas, por lo que no hay resultados correctos e incorrectos provocados por el diseño.

Se considera como software abierto también a los programas que se utilizan como procesadores de texto, al correo electrónico, las hojas de cálculo, manejadores de bases de datos, a los simuladores o a los lenguajes de programación. Con este tipo de software, no existe un contenido predefinido, no hay problemas prediseñados, solo una herramienta tan amplia como el potencial del usuario. En este caso, el maestro toma un papel diferente en el cual diseña proyectos para el uso del software en su asignatura. En el software abierto el resultado final siempre es distinto u depende de las decisiones tomadas por el usuario.

Cuando se utiliza este tipo de software es claro que no se requiere de la creación de otros con contenidos nacionales, ya que ninguna de las aplicaciones mencionadas o consideradas como sw abierto tienen un contenido.

El software abierto añade la experiencia personal del aprendizaje; el uso de una lógica difusa, así como de la intuición, en la que prevalece el desarrollo de la creatividad, el pensamiento crítico, la capacidad de exploración y las habilidades de comunicación y de trabajo en equipo.

La inquietud con respecto a la riqueza, la calidad y el contenido nacional de la oferta disponible del software abierto parece ser menos relevante para sus defensores que la escasez de contenidos nacionales de calidad en materia de software cerrado.
El software cerrado es aquel que tiene un contenido definido y establece jerarquías y relaciones univocas con niveles o módulos de conocimientos y destrezas.

Frecuentemente tienen alta relación con el currículo, a diferencia del software abierto, y el contenido obedece a conceptos preestablecidos por el diseñador, quien incorpora exámenes que plantean preguntas cerradas, con respuestas correctas o incorrectas.

Quienes están involucrados en el desarrollo de software, caracterizan al software cerrado más avanzado (EAC: enseñanza asistida por computadora) como aquel que permite el desarrollo de habilidades como la aritmética, el aumento de conocimientos en temas específicos y la resolución de problemas.

Este tipo de software avanzado, el programa, apegado a currículos, contendrá todos los elementos para que el alumno adquiere y refuerce los conocimientos de su grado escolar y los aplique en problemas contenidos en el software. Para este caso, el maestro toma un papel diferente, en donde solo será consultado por el alumno cuando el problema que enfrenta no pueda ser resuelto con las habilidades que ya desarrolló. En algunos casos, este software induce al maestro a profundizar sus conocimientos sobre la asignatura que enseña, pues podría presentar problemas que estén por encima de sus conocimientos actuales.

Aunque el software cerrado es muy criticado, algunas experiencias muestran, que los alumnos llegan a resolver problemas que sus maestros no pueden. Los críticos opinan que en la enseñanza asistida por computadora no se programa lo que se enseña, si no al estudiante.

Con un software híbrido, se persigue obtener los beneficios de una enseñanza más individualizada, a la cual se accede por medio del autoaprendizaje. Se busca adicionar los beneficios de una enseñanza colaborativa, que se desarrolla mediante el uso de software correspondiente en equipos de trabajo integrados por varios alumnos que emprenden proyectos colectivos.
El contenido abarca algo de la estructura curricular de los libros de textos, pero lo hace en tal forma que captura la atención del estudiante de una manera más efectiva, al utilizar preguntas abiertas que exigen una investigación independiente, quizás también asistida por computadora. Los defensores de este tipo de software, señalan, que, correctamente utilizado, puede contribuir a la menor masificación de la enseñanza actual y prestar atención a las necesidades individuales de cada estudiante. Otra de las ventajas que presenta este tipo de software, es el acceso a fuentes externas para enriquecer la experiencia del aprendizaje, incluyendo enormes bibliotecas digitales, a través de un enlace con nodos de información del Internet.

2.17.2 Otras clasificaciones de software educativo.
Francisco Morfin (1994), menciona que el software se puede clasificar en función del estilo de programación y hace alusión a dos grandes familias: la primera según la organización metodológica y la segunda en función de la técnica utilizada.

De acuerdo a la organización metodológica, tenemos:

✔ Software instruccional.

Los contenidos son un conjunto de unidades cerradas y organizadas de manera secuencial. La interacción alumno-computadora se centra en la información contenida en el programa, que mantiene una secuencia establecida por el diseñador.

✔ Software de simulación.

El alumno explora sus hipótesis acerca de un mundo donde la experimentación no es fácil, es costosa o peligrosa. Se busca el desarrollo de intuiciones acerca del mundo simulado, así como fomentar el enfoque de descubrimiento-exploración como método de solución de problemas.
✓ Software conjetural en ambientes de programación

En esta categoría se incluyen los lenguajes de programación y aquellos juegos que permiten la construcción de conceptos a partir de sus acciones directas sobre el ambiente. El sistema es pasivo y sin la iniciativa del usuario no ocurre nada.

✓ Software de ambientes de trabajo.

Son herramientas creadas para ayudar a lograr ciertos objetivos, cuyos procesos de construcción implican la elaboración de tareas fácilmente realizadas por el software.

De acuerdo a las técnicas utilizadas, encontramos:

✓ Software de ordenamiento secuencial.

Se orientan hacia el software relacionado con el currículo y consisten en organizar el contenido con una lógica de exposición.

✓ Micromundos.

Son pequeñas unidades físicas representadas en términos de sus elementos y las interacciones entre ellos con las relaciones causales que los unifican y afectan.

✓ Esquema scripts.

Los esquemas son representaciones semiautónomas de mundos distintos. Normalmente se basan en simular los modelos mentales, entre los que pueden distinguirse:

Por tipo: el cuantitativo y el cualitativo.

Por orden: en función del número de grados de libertad del sistema que se modela.
Por grado: determinado por el nivel de elaboración, que a su vez depende de la información estructural, los principios que los explican y simulan y sus estructuras de control.

✓ Redes semánticas.

La información se modela a partir de redes semánticas. Una red semántica es un dibujo donde cada nodo es un concepto y los enlaces entre los nodos representan las relaciones entre los conceptos.

✓ Transparencia procesal.

En este tipo de software, además de los resultados que se obtiene, otro de los objetivos es hacer explícito el razonamiento seguido y la información utilizada para llegar a dicho resultado. De esa forma, el usuario compara su proceso y resultado con el del software.

✓ Inteligencia artificial.

Se busca construir modelos de estudiantes y sus patrones de procesamiento, los cuales permiten llevar a cabo un análisis cognoscitivo del aprendizaje del alumno, categorizar la enseñanza para ajustarse a las necesidades del alumno e informar al maestro sobre el nivel de conocimiento y aprendizaje del alumno.

✓ Multimedia e hipermedia.

El software multimedia consiste en la ampliación de los medios controlados para la computadora; video, sonido, etc.

Para Manuel Gándara (1996), el software educativo se clasifica de la siguiente manera:
✓ Explicitamente instruccional

Está típicamente relacionado con el currículo, opera con un contenido específico relacionado con un nivel escolar predeterminado y presenta la información de manera secuenciada. No puede utilizarse de manera autodidacta.

✓ De apoyo a la instrucción

Se relaciona con el currículo de manera laxa, no tiene una secuencia óptima ni un contenido específico, y puede utilizarse en varios niveles de escolaridad o incluso permite la modalidad autodidacta.

✓ Para aprendizaje por exploración/simulación

No tienen contenido predeterminado ni grado escolar o contexto de uso específico.

✓ Juegos

Tienen un marcado énfasis en el aspecto lúdico, se aplican a diversos niveles y contextos de usos.

✓ De autoría/presentación

Es el que permite desarrollar software educativo o de aplicación educativa.

Como podemos observar, la posibilidad de clasificar el software bajo distintos criterios, nos demuestra la oferta infinita disponible de este. Sin embargo, la localización del software, aunada a la oferta de software abierto y a los costos de implementación de este, quizá sean las barreras principales por las que en México, el esfuerzo por desarrollar software educativo, son aún muy pocos.
CAPÍTULO III

APLICACIONES DE LAS NTIC A LA EDUCACIÓN BÁSICA EN MÉXICO
CAPÍTULO III
APLICACIONES DE LAS NTIC A LA EDUCACIÓN BÁSICA EN MÉXICO.

3.1 Educación y Nuevas Tecnologías.
Las TIC y su impacto en todos los campos de la actividad humana imponen cambios de paradigmas en la educación, nuevas formas de concebir el proceso enseñanza-aprendizaje, así como recursos y elementos mediadores de la práctica en el aula.

En los últimos años se introducen a los salones de clase las tecnologías de la información y la comunicación como apoyo a los procesos educativos, surgen nuevas herramientas y nuevos ambientes de aprendizaje que promueven mejoras a la práctica educativa.

Existen, diversos proyectos pedagógicos con tecnología, que impulsan y proponen la elección, combinación y uso de recursos tecnológicos en forma reflexiva, contextual y estratégica. Algunos se desarrollan en México a través del Instituto Latinoamericano de la Comunicación Educativa, ILCE.

Antes de ver cuáles son los ejemplos de esos proyectos e instituciones que impulsan el uso de las Nuevas Tecnologías de Información y Comunicación es necesario conocer un poco sobre el Instituto Latinoamericano de la Comunicación Educativa.
ILCE

http://portal.ilce.edu.mx

ILCE es un organismo internacional sin fines de lucro, integrado por trece países miembros de Latinoamérica, entre los que se encuentran: Bolivia, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Haití, Honduras, Nicaragua, Panamá, Paraguay, Venezuela y México; el país sede.

¿Cuáles son sus objetivos?

- Contribuir a aprovechar los recursos tecnológicos para mejorar en las personas competencias útiles para la vida y el trabajo.
- Potenciar las Tecnologías de Información y Comunicación
- Promover la investigación
- Desarrollar contenidos en diferentes medios
- Producir materiales para la educación y formación
- Innovar modelos educativos
- Fomentar el uso de plataformas y espacios virtuales de aprendizaje
- Lograr un impacto positivo en la formación integral de las personas e incidir en el mejoramiento de su calidad de vida, sus comunidades y países.

Y los ejemplos son:
3.1.1 Telesecundaria

La telesecundaria nace en 1966, buscando disminuir el rezago educativo. Así es como la SEP inicia en esa década de manera experimental el proyecto de Enseñanza Secundaria por Televisión (Telesecundaria). Para 1988 se transmite por circuito abierto el primer modelo de Telesecundaria con validez oficial por televisión con la transmisión en directo de clases. Desde entonces, este modelo de educación ha pasado por diversas etapas, misma que lo ha hecho crecer y actualizarse.

3.1.2 COEEBA

En la década de los 80, para ser más exactos en 1985, tras los adelantos tecnológicos a que la humanidad se enfrentaba, la SEP reconoce como fundamental que los docentes se involucrarán más en el uso de las nuevas herramientas tecnológicas. En consecuencia, a través del ILCE, la SEP realiza una serie de acciones que permitiría a los docentes obtener los conocimientos necesarios sobre el uso y manejo de la computadora como auxiliar didáctico en las aulas, a partir del programa de COEEBA (Computación Electrónica en la Educación Básica).

3.1.3 Edusat

http://edusat.ilce.edu.mx/home.htm

Edusat es un sistema de señal digital comprimida que en 1994 inicia transmisiones vía satélite, siendo el más importante de su naturaleza en Latinoamericano; depende de la Secretaria de Educación Pública y su función principal es poner a disposición de los mexicanos una amplia oferta de televisión y radio con fines educativos, crecer y actualizarse.
3.1.4 Red escolar
http://www.redescolar.ilce.edu.mx/

Red Escolar inició en 1997, lleva a las escuelas de educación básica y normal un modelo tecnológico de convergencia de medios, basado en el uso de la informática educativa, la conexión a Internet, videotecas, discos compactos de consulta (Cd ROM), bibliotecas de aula y la red de televisión educativa. Se basa un sistema de comunicación que permite a estudiantes y profesores compartir ideas y experiencias.

Fomenta el ejercicio de un pensamiento crítico, analítico y reflexivo con base en el trabajo colaborativo que les proporciona vivir el proceso de enseñanza-aprendizaje de una forma distinta a la que generalmente se plantea en la enseñanza tradicional.

3.1.5 Sepiensa
http://sepiensa.org.mx/default.htm

SEPIENSA es un portal en Internet dirigido a la comunidad escolar; niños y niñas, jóvenes, docentes y familia cuyos contenidos son un apoyo a la currícula tanto de educación básica como media superior y superior. Incluye artículos sobre desarrollo humano, sexualidad, discapacidad, música, salud, entre muchos otros.

3.1.6 Educación para el Siglo XXI – E21
http://e21.ilce.edu.mx/e21/web/home/

E21 es un proyecto que impulsa el uso de las tecnologías de la comunicación y la información como herramientas para la enseñanza de las asignaturas que conforman el currículo de la escuela secundaria y educación media superior, a
través de materiales educativos específicamente diseñados para aprovechar los recursos que ofrecen esas tecnologías.

3.1.7 **Red Satelital de Televisión Educativa - EDUSAT**
http://edusat.ilce.edu.mx/home.htm
EDUSAT tiene como objetivo renovar la presentación y el manejo de los contenidos educativos provocando, en consecuencia, cambios en la conducción del proceso y en los patrones de interacción en el aula.

3.1.8 **DGTVE**
http://dgtve.sep.gob.mx/quees/quees.htm
Secretaría de Educación Pública, dependiente de la Unidad de Planeación y Evaluación de Políticas Educativas. Las tareas a cargo del personal que integra la DGTVE son producir, programar y transmitir contenidos educativos a través de medios electrónicos, principalmente la televisión, mediante la Red Edusat.

Sin embargo, el trabajo no concluye con la transmisión, ya que también son esenciales las labores de mantenimiento y operación técnica de la Red Edusat, la sistematización y la conservación de los acervos audiovisuales, la formación y la capacitación de profesionales en materia de audiovisual educativo, y la realización de actividades de investigación, desarrollo y evaluación.

3.1.9 **Enciclomedia**
En la búsqueda de seguir fortaleciendo el sistema educativo en México, con el desarrollo de las TIC y la recopilación de experiencias surge en el 2003 Enciclomedia, que se desarrolla en el ILCE.
Es un programa educativo que busca apoyar a la educación básica con TIC. La idea principal es reforzar el contenido de los libros de texto gratuitos con materiales educativos complementarios y apoyar la enseñanza en el aula. Con Enciclomedia se pretende mejorar las condiciones de las aulas mexicanas, actualizar a los docentes en el uso pedagógico de las TIC (apoyando su cátedra frente al grupo), mejorar la calidad de la educación a nivel nacional diversificando los métodos de comprensión de los contenidos de los libros de texto, disminuir la brecha digital, diseñar estrategias de integración educativa para sectores en desventaja dentro del sistema educativo y abordar integralmente los temas y contenidos de los libros de texto mediante ligas transversales que recorren los contenidos de los distintos grados del nivel básico.

En el lenguaje pedagógico hay nuevas concepciones y estrategias para adaptar la educación especial a los tiempos actuales, en donde se busca la integración educativa. El concepto de Nuevos Ambientes de Aprendizaje ligado al uso de nuevas herramientas tecnológicas nos permite formas diferentes de organizar la práctica en el aula, que implica el empleo de estas tecnologías y el trabajo con grupos en donde se busca desarrollar al máximo las capacidades de los niños tanto con necesidades educativas especiales con o sin discapacidad, como sin ellas.

3.2 ¿Qué es Enciclomedia?

Como bien sabemos, la sociedad enfrenta cambios acelerados y transformaciones profundas que evidentemente repercuten en los procesos educativos. La integración de las nuevas tecnologías de la información y la comunicación y su impacto en todos los campos de la actividad humana, impone cambios de paradigmas, nuevas formas de repensar la educación y de concebir los procesos de enseñanza y aprendizaje, así como recursos y elementos mediadores de la práctica en el aula.
Innumerables estudios e investigaciones a nivel mundial, concluyen que el aprovechamiento efectivo de las potencialidades de las nuevas tecnologías está en relación directa con la existencia de un proyecto pedagógico escolar, que implique competencias específicas en los profesores.

Una verdadera transformación escolar implica elaborar e implementar propuestas pedagógicas que faciliten el uso de la tecnología como medio para renovar las prácticas pedagógicas y generar nuevas competencias en los niños y jóvenes del país.

Por ello el Gobierno Federal a través de la Secretaría de Educación Pública se ha comprometido a impulsar una política que fomente el uso de estas tecnologías en la educación, mediante la elaboración y desarrollo de proyectos pedagógicos y la ampliación y consolidación de la infraestructura ya disponible para contribuir al mejoramiento educativo. Así, en la segunda mitad de la década anterior, la Subsecretaría de Educación Básica y Normal inicia el desarrollo de diversos proyectos sobre nuevas tecnologías en la educación, a través de convenios con instituciones como el Instituto Latinoamericano de la Comunicación Educativa (ILCE), CONACYT, ITAM, el Instituto Politécnico Nacional, la Universidad Pedagógica Nacional, entre otros.

La política educativa actual ha subrayado la importancia del aula y de la escuela como centro del sistema educativo, comprometiéndose a construir una escuela pública eficaz, pertinente y relevante a las necesidades de los nuevos ciudadanos que necesita el país. Enciclomedia contribuye de manera clara y decidida a que los niños de México aseguren el logro de los propósitos educativos y el aprendizaje efectivo.

A lo largo de la historia reciente de la educación mexicana, el instrumento por excelencia para la enseñanza y el aprendizaje ha sido el libro de texto.

La SEP trabaja teniendo como prioridades la calidad y equidad educativas, con la conciencia de que el camino hacia el conocimiento está en las manos del maestro.
que hoy en día cuenta con más herramientas didácticas y tecnológicas. Tanto él como los alumnos tienen probadas capacidades para interactuar con diversos materiales educativos además del libro de texto, que enriquecen el aprendizaje. En este marco se circunscribe el programa.

Enciclomedia.

Enciclomedia es una herramienta pedagógica desarrollada por científicos e investigadores mexicanos, que relaciona los contenidos de los libros de texto gratuito con el programa oficial de estudios y diversos recursos tecnológicos, como audio y video, a través de enlaces de hipermedia que conducen al estudiante y al maestro a un ambiente atractivo, colaborativo y organizado por temas y conceptos que sirven de referencia a recursos pedagógicos relacionados con el currículo de educación básica.

Establece un puente natural entre la forma tradicional de presentar los contenidos curriculares y las posibilidades que brindan las nuevas tecnologías para manejar la información y las telecomunicaciones, sin requerir de conectividad para funcionar, dado que se trata de un software que puede distribuirse a través de discos compactos e instalarse en el disco duro. Para cada uno de los temas propuestos en los libros de texto gratuitos, Enciclomedia lleva, desde diferentes puntos dentro del texto, a una barra de menú en donde aparecen ordenados de acuerdo al tema de partida, todo tipo de materiales educativos.

En su primera etapa, y tomando en cuenta los aspectos pedagógicos así como los recursos disponibles, Enciclomedia se implementará en todas las aulas del país en 5to. y 6to. grado de primaria, para llegar a todos los grados de educación primaria y secundaria, en esta última con especial atención a telesecundaria, en sus etapas posteriores.
El programa fomenta el federalismo: propicia que cada entidad federativa incluya los materiales regionales más pertinentes y le imprima un sello propio a la organización y operación de los procesos de selección, capacitación y acompañamiento técnico de las escuelas participantes desde su primera etapa de implementación. A la vez, requiere de un esfuerzo coordinado para articular las acciones a favor de la escuela como las que se realizan en las diversas áreas responsables de la planeación, actualización, investigación, evaluación, mantenimiento y equipamiento de espacios educativos, así como la producción de materiales para uso estatal y federal.

Si bien la SEP trabaja para modificar el rezago y las carencias actuales en el ámbito educativo, considera que uno de los elementos centrales para el desarrollo del país es la disminución de la brecha tecnológica, y estas son dos necesidades que deben atenderse a la par.

Propicia además la disminución del rezago tecnológico principalmente en las zonas rurales y suburbanas, y un adecuado acceso de los niños y niñas mexicanas a las nuevas tecnologías, ya que Enciclomedia promueve la equidad y permite democratizar el acceso al conocimiento, construyendo una plataforma común entre todos los niños del país.

México debe hacer un esfuerzo consistente y firme en este ámbito, para contrarrestar el rezago tecnológico con respecto a otros países, para que cuando nuestros niños y niñas tengan que desempeñarse como ciudadanos activos y comprometidos con el desarrollo de país, se incorporen adecuadamente a la sociedad del Siglo XXI, contando con las competencias básicas y los conocimientos necesarios para hacer de la tecnología una herramienta favorable a su desarrollo social y laboral.

Las acciones de Enciclomedia responden a los objetivos rectores del Plan Nacional de Desarrollo 2001-2006 de la siguiente forma:
• Ampliar las escuelas y aulas que cuenten con materiales educativos y el equipamiento necesario, para apoyar el desarrollo de los docentes y promover nuevas prácticas educativas que estimulen el aprendizaje.

• Generar alternativas que dinamicen y renueven las prácticas de las instituciones educativas dentro y fuera del aula.

• Fortalecer la educación primaria como etapa de formación y desarrollo de habilidades básicas del pensamiento, favoreciendo el aprendizaje sistemático y continuo.

• Contribuir a una mejor convivencia humana a través del respeto a la persona, la integridad de la familia, la promoción del interés general, la igualdad entre los individuos y el reconocimiento de las diferencias culturales.

El programa Enciclomedia, está contemplado en el Subprograma de Educación Básica del Programa Nacional de Educación 2001-2006, en el rubro de “Tecnología de Comunicación e Información”, donde se establece que la expansión acelerada de las nuevas tecnologías de la información y la comunicación, así como su impacto en la vida social, representan una oportunidad para el desarrollo educativo y, al mismo tiempo, se plantean retos de financieros, técnicos y pedagógicos.

El PNE determina además que el aprovechamiento efectivo de las potencialidades de estas tecnologías está en relación directa con la existencia de un proyecto pedagógico en la escuela, con competencias específicas de los profesores y con la transformación de concepciones educativas de la comunidad en su conjunto.

Esto implica el reto de asegurar la elaboración de propuestas pedagógicas que permitan un uso de la tecnología como medio para renovar las prácticas pedagógicas y preparar adecuadamente a los profesores para que en sus labores cotidianas incorporen el uso de estos recursos.
Además, Enciclomedia se enmarca en el objetivo estratégico del PNE: “Calidad del proceso y el logro educativos”, que a la letra dice: “Garantizar que todos los niños y jóvenes que cursen la educación básica adquieran conocimientos fundamentales, desarrollen las habilidades intelectuales, los valores y las actitudes necesarias para alcanzar una vida personal y familiar plena, ejercer una ciudadanía competente y comprometida, participar en el trabajo productivo y continuar aprendiendo a lo largo de la vida”.

Este objetivo contempla entre otras estrategias, una política de fomento al uso, expansión y desarrollo de las tecnologías de la información y la comunicación, así como la producción de materiales audiovisuales e informáticos que favorezcan el aprendizaje.

El objetivo particular relacionado con la política antes mencionada, establece las siguientes líneas de acción:

• Fomentar, entre los alumnos, maestros, directivos y padres de familia, la cultura de las tecnologías de la información y la comunicación.

• Desarrollar y adquirir materiales educativos audiovisuales, e informáticos pertinentes y de calidad y ponerlos a disposición de alumnos, maestros, padres de familia y público en general.

• Diseñar modelos didáctico-metodológicos adecuados para uso de tecnologías de la información y comunicación dentro del aula.

• Facilitar, mediante el uso de tecnologías de la información y la comunicación, el acceso a múltiples fuentes de información para alentar la diversidad de puntos de vista en el aula.

• Consolidar y actualizar la infraestructura tecnológica de producción y transmisión televisiva existente y ampliar su cobertura y operación.
• Impulsar la consolidación del sistema nacional de imagen e información educativa, mediante el acopio, digitalización, preservación, documentación y sistematización de acervos educativos pertinentes.

• Ampliar y fortalecer, en coordinación con las entidades federativas, el equipamiento de recepción en las escuelas primarias y secundarias en materia de tecnológica de la información y la comunicación.

Asimismo se establecen las siguientes metas para el programa Enciclomedia:

• Desarrollo de contenidos en soporte electrónico para incorporar los libros de texto gratuitos de quinto y sexto grados de educación primaria al sistema Enciclomedia para el 2003.

• Implantación en coordinación con las autoridades educativas estatales, del sistema Enciclomedia para su consulta en todas las escuelas en condiciones de incorporar esta tecnología a partir 2003.

• Capacitación en el uso del sistema Enciclomedia a todos los profesores de las escuelas en donde se hayan incorporado este sistema a partir 2003.

Enciclomedia constituye un esfuerzo para el desarrollo de las tecnologías de la información y la comunicación (TIC) en la educación básica, y busca impulsar la producción, distribución y fomento del uso eficaz de materiales educativos, audiovisuales e informáticos, congruentes con los planes, programas y libros de texto; contribuyendo a:

1. Una mayor equidad en la permanencia y acceso a la educación básica de calidad que potencie las capacidades de los estudiantes;

2. Proporcionar a maestros y estudiantes de educación primaria fuentes de información actualizada, así como nuevas herramientas para la construcción de los aprendizajes con el apoyo de recursos tecnológicos multimedia;
3. Sugerir al maestro estrategias didácticas innovadoras para el tratamiento de los temas, que refuercen el aprendizaje de los contenidos curriculares en las distintas asignaturas de educación primaria;

4. Promover el desarrollo de habilidades cognitivas y competencias comunicativas en los alumnos y los maestros a través de la convergencia de medios, tecnologías de la información e instrumentos de comunicación asociados con el uso de Enciclomedia e;

5. Impulsar el federalismo mediante mecanismos descentralizados de gestión institucional y de participación social en la educación.

Enciclomedia es una estrategia didáctica que se fundamenta en los libros de texto gratuito y que, a partir de su edición digital, los enlaza a la biblioteca del aula, a fotografías, mapas, visitas virtuales, videos, películas, audios, interactivos, animaciones y otros recursos tecnológicos, propiciando un trabajo conjunto y mayor interacción a favor del aprendizaje, entre maestros y alumnos, favoreciendo además competencias del pensamiento y la observación.

Aprovecha e integra recursos y experiencias de otros proyectos de la SEP eficazmente probados: RedEscolar, Sepiensa, Biblioteca Digital, SEC 21, Enseñanza de la Física con Tecnologías (EFIT) y Enseñanza de las Matemáticas con Tecnologías (EMAT), entre otros.

Es también un espacio para la colaboración organizada donde maestros, instituciones públicas, privadas y diferentes sectores sociales, podrán proponer, siempre con base en la Constitución y la Ley General de Educación, materiales y recursos de interés tanto general como regional, para seleccionar y trabajar los más pertinentes para los diversos procesos de enseñanza y aprendizaje conforme a las necesidades de los grupos, de las escuelas, de las comunidades y de las entidades federativas.
Por lo tanto, Enciclomedia busca constituirse como un importante recurso didáctico, con una amplia gama de posibilidades para la investigación, documentación, retroalimentación y construcción del conocimiento, generando novedosos escenarios de aprendizaje, así como nuevas rutas de acceso a la información, con la intención de contribuir al fortalecimiento del logro de los estándares educativos de las escuelas primarias del país.

3.3 Otros proyectos educativos con NTIC.

3.3.1 EMAT: Enseñanza de las Matemáticas con Tecnología.

En el modelo EMAT se emplean una serie de piezas de software abierto de contenido, las cuales se utilizan en combinación con calculadoras gráficas. Inicialmente, a cada profesor se le capacita de manera gradual en cada una de las piezas de software: Cabri-Géometre, SimCalc Math Worlds, Hoja de Cálculo y Logo.

La enseñanza de las matemáticas con tecnología, EMAT, persigue entre otros fines incorporar de forma sistémica y gradual el uso de las TIC a la escuela secundaria pública para la enseñanza de las matemáticas, poner en práctica el uso significativo de las TIC con base en un modelo pedagógico orientado a mejorar y enriquecer los contenidos curriculares y Explorar el uso de las TIC para la enseñanza de contenidos, que van más allá del currículum, con base en el acceso a ideas poderosas en matemáticas.

A continuación se describen brevemente el contenido curricular y las habilidades que se desarrollan con cada una de las herramientas.
Hoja de cálculo.

Las actividades diseñadas para este ambiente de cómputo se encuentran en el libro Matemáticas con la Hoja de Cálculo (EMAT), con esta herramienta se busca abordar dificultades bien conocidas en el aprendizaje del álgebra en la escuela secundaria, específicamente en la introducción de los alumnos a nociones fundamentales como la de función, de variable, parámetro, fórmula, expresiones equivalentes y simbolización de patrones numéricos o geométricos. También se utiliza para enseñar a modelar y resolver problemas aritmético-algebraicos, así como problemas planteados en el contexto de diferentes materias científicas.

Las actividades propuestas en el libro son de tres tipos: básicas, expresivas y exploratorias. Las básicas introducen al alumno al manejo del software; las expresivas llevan al estudiante a elaborar hojas de cálculo con los elementos que se le proporcionan, relativos a un contenido, problema o situación determinados; incluyen y exploran temas matemáticos nuevos. Las exploratorias son actividades donde los alumnos pueden utilizar archivos previamente elaborados por un experto, en esta modalidad se trabaja con conceptos y modelos matemáticos de mayor complejidad, por ello, la hoja de cálculo es preparada de antemano, para que el alumno explore diferentes aspectos de los conceptos y fenómenos. Estos archivos están contenidos en un disco compacto que se incluye en el libro.

Transversalmente a estas cuatro herramientas, se trabaja con la calculadora bajo la propuesta CAS (Sistemas algebraicos para calculadoras). La propuesta didáctica para utilizar estas herramientas fue diseñada por expertos nacionales tomando como base un modelo de aprendizaje colaborativo. Los ambientes computacionales seleccionados habían sido ya probados a nivel de investigación y en sistemas educativos, tanto de sus países de origen, como a nivel internacional.
Cabri-Géometre.

Las actividades que se diseñaron para este software centran su atención en temas de geometría y se incluyen en el libro Geometría dinámica (EMAT). Con las actividades de este libro el que el estudiante puede aprender geometría mediante la manipulación controlada de versiones electrónicas de los objetos geométricos. El libro contiene una propuesta de distribución de las actividades para los tres grados de secundaria, así como los exámenes correspondientes para cada grado. El libro incluye un disco compacto con una versión de demostración del software.

El software se comporta de acuerdo a las reglas de la geometría euclidiana y permite a los alumnos explorar y elaborar conjeturas. La manipulación directa de los objetos matemáticos ayuda a cerrar la brecha entre percepción y geometría, debido a que el software cuenta con elementos que brindan la posibilidad de animar las construcciones y percibir transformaciones de trazos y figuras geométricas, lo cual sería imposible con el trabajo en papel y lápiz.

SimCalc Math Worlds.

Las actividades diseñadas para estas dos herramientas se incluyen en el libro Modelación. Matemática del Cambio (EMAT). Con las actividades correspondientes a SimCalc MathWorlds es posible una introducción temprana a temas de la matemática de la variación y el cambio, de ahí que se considere que este software da la oportunidad de explorar ideas matemáticas avanzadas que contribuyen al desarrollo del pensamiento complejo. Las ideas que se desarrollan en este campo son centrales en la vida cotidiana en problemas de dinero, ideas de movimiento, cambios poblacionales, variaciones de temperatura, etc., como puede verse los temas que se abordan con este software, por lo general, van más allá del currículo de educación secundaria.
Algunas de las características de SimCalc, con una simulación, de tecnológica avanzada, ofrece al estudiante la oportunidad de aprender matemáticas con un enfoque gráfico, lo cual permite al alumno familiarizarse con la lectura e interpretación de gráficas, relacionadas a situaciones de movimiento, habilidades muy importantes en la vida cotidiana y en otras materias.

Las actividades diseñadas para usar SimCalc son de dos tipos, básicas y complementarias, con las primeras se introduce al alumno en el uso del software así como tratar de profundizar en los conceptos y utilizar el paquete para conectar sus ideas con otras áreas de las matemáticas. Con el segundo tipo de actividades se busca trabajar con situaciones fuera del programa de cómputo.

Stella.

Con respecto a Stella, es un paquete de cómputo que permite expresar y probar ideas acerca del funcionamiento de sistemas dinámicos reales a través de la construcción de modelos matemáticos. Este enfoque de modelación implica trabajar con ideas complejas de la matemática, las cuales pudieran resultar fuera del alcance de los alumnos de secundaria. Sin embargo, Stella proporciona un paso intermedio en la representación, la cual se hace por medio de un diagrama y no con un tratamiento simbólico a partir de ecuaciones matemáticas, lo cual favorece su uso didáctico. La modelación no es un tema que aparezca explícitamente en el currículo vigente, pero las actividades con Stella permiten a los alumnos acercarse a ideas poderosas en matemáticas, a través de un ambiente de modelación.

Las actividades propuestas para el uso de este software, son de tres tipos: las básicas con las cuales se busca introducir al alumno al funcionamiento de Stella; introducirlos a la idea de modelación matemática mediante diagramas y dar un enfoque de modelación al tema de funciones; el segundo grupo de actividades son de tipo exploratorio, con las que se examinan modelos previamente construidos.
con Stella; por último las actividades complementarias en las que se plantean problemas a resolver con el auxilio del software.

Logo.

Con las actividades diseñadas se busca enfatizar el aprendizaje matemático, que puede darse por medio de un adecuado uso del lenguaje.

Logo, se considera un ambiente tipo micromundo, cuyo lenguaje permite desarrollar en el alumno tanto una forma de pensar matemáticamente como un medio de expresión. Se incorpora Logo a EMAT a través de actividades de programación. Al escribir un procedimiento, el niño puede usar y expandir sus habilidades de razonamiento lógico, de análisis y síntesis; también entrará en contacto con nociones de secuenciación, modulación y repetición. La idea de generalización y expresión en un lenguaje formal, las complejas nociones de variable matemática y de relaciones funcionales, están todas implícitas en la escritura y uso de procedimientos.

Para articular las actividades de programación con los temas matemáticos que se espera los niños exploren, es esencial que las actividades de Logo sean parte de un ambiente didáctico estructurado.

Entre los temas matemáticos a los que queremos acercarnos a través de las actividades de programación con Logo están: propiedades de figuras geométricas, construcción del concepto algebraico de variable, el concepto de función, razón y proporción, entre otros, así como algunas áreas no incluidas en el currículum actual.

La versión de Logo que se eligió es MSWLogo. Las principales razones para esta elección son:

- Simplicidad de la interface que permitirá a los usuarios enfocarse en el aspecto de programación a través de la escritura y el desciframiento de procedimientos.
Vale la pena notar que utilizamos procedimientos y actividades simples y directas para no distraer a los usuarios de la esencia matemática contenida en ellos; de experiencias previas se ha documentado que, frecuentemente, se encuentra mayor poder en la simplicidad.

- La versión de Logo que se utiliza puede ser distribuida de manera gratuita.

- Existe una versión en español de MSWLogo.

La extensión que se realiza de EMAT con Logo se encuentra en etapa experimental, por lo cual las actividades aún se están diseñando y poniendo a prueba en escuelas secundarias de distintos estados.

3.3.1.1 Infraestructura.

Un aula EMAT, de manera óptima, se compone de 16 computadoras, considerando que los alumnos trabajan en parejas y que un grupo de 30 estudiantes máximo es atendido por un maestro, quien también dispone de una máquina. Es deseable que las computadoras estén conectadas en red local y con acceso a Internet, aunque esto último no es indispensable. El complemento del equipo es un juego de 16 calculadoras TI-92, un ViewScreen, un proyector de acetatos y una impresora, tal y como puede apreciarse en el siguiente dibujo:
3.3.2 ECIT: Enseñanza de las ciencias con tecnología.

El proyecto de Enseñanza de las Ciencias con Tecnología (ECIT) forma parte de una serie de proyectos que la Secretaría de Educación Pública ha realizado a lo largo de más de 10 años para impulsar el uso de la tecnología en la enseñanza de las ciencias. Estos proyectos han dado respuesta a la necesidad de avanzar en el ámbito educativo bajo los lineamientos que fueron establecidos en el Programa de Desarrollo Educativo 1995-2000 de la propia Secretaría.

ECIT tiene como objetivo principal el contribuir en el mejoramiento de la enseñanza de las ciencias en la secundaria a partir del uso de la tecnología. Para lograr lo anterior consideramos que es necesario construir una propuesta que utilizando la tecnología permita a los alumnos:
• Reconocer sus ideas sobre los fenómenos científicos.

• Confrontar sus ideas con las de otros alumnos a través de situaciones explícitas y en un contexto específico que les apoye en la comprensión de los conceptos científicos implicados en la representación de los fenómenos naturales.

• Reconstruir y construir nuevas formas de representación que sean más cercanas al conocimiento científico.

• Identificar que existen diversas representaciones para los mismos fenómenos que dependen del contexto específico en el que se desarrollan y que estas representaciones coexisten.

• Promueva en el alumno la intencionalidad hacia el cambio conceptual y de actitud hacia el conocimiento científico.

• Generalizar los modelos dentro de ciertos contextos y dominios específicos para transponerlos hacia la solución de nuevas situaciones y problemas de su entorno cotidiano. Lo que le lleva a una posible integración de ciertas representaciones y reconozca el dominio de aplicación específica de cada una de ellas.

• Desarrollar una visión de la ciencia dinámica y cambiante de la que ellos podrán percibir que los proceso de construcción del conocimiento forman parte de su cultura.

El modelo ECIT abarca las tres áreas de ciencias naturales que corresponden al plan curricular de la escuela secundaria, contemplando para ello una misma estructura conceptual, didáctica y tecnológica. Por lo que el uso del programa promueve la integración sobre la visión de la ciencia y no la fragmentación disciplinaria. El modelo también contempla diversos niveles de acercamiento del estudiante hacia la ciencia, por lo que la estructura con la que están formuladas sus experiencias y actividades de aprendizaje constituyen una guía amplia y diversa por la que los alumnos podrán confrontar sus ideas sobre los distintos
fenómenos así como construir una representación cada vez más cercana a la de la ciencia.

3.3.2.1 Infraestructura.
El aula ECIT comprende 12 computadoras con equipo multimedia, una computadora para el profesor y dos computadoras en donde estará instalado el software ECIT y las interfases para medir con sensores. Dos interfaces y juegos de sensores (pH, temperatura, voltaje, presión, luz, humedad) para medición en tiempo real y software de graficación para dos mesas de trabajo. Correo electrónico para establecer comunicación entre los alumnos y el profesor al menos en la máquina del profesor. Internet, en la computadora del profesor. Videos, CD que proporcionen información gráfica. Equipo de laboratorio.

ECIT es un proyecto que invita a maestros y alumnos a participar en el proceso de construcción de conocimiento dentro de las áreas de ciencias explorando nuevas ideas y propuestas de representación de los fenómenos que nos rodean.

3.3.3 EFIT: Enseñanza de la Física con Tecnología.
Para el proyecto EFIT, en las aulas de educación secundaria, se utilizó una combinación de software educativo abierto y especializado, con otras herramientas como los sensores electrónicos. El proyecto EFIT es el resultado de la adaptación a la enseñanza de la física en la escuela secundaria en México del modelo canadiense Technology Enhanced Science Secondary Instruction (TESSI).

El modelo TESSI, es un programa innovador que combina el uso de computadoras, interfases, comunicación y obtención de información, con las nuevas tecnologías y equipo de multimedia en el salón de clases, para apoyar los procesos de enseñanza y aprendizaje de la física.
El uso de EFIT en la educación básica, persigue como fines que se incorporen de forma sistémica y gradual el uso de las TIC a la escuela secundaria pública para la enseñanza de la física, poner en práctica el uso significativo de las TIC con base en un modelo pedagógico orientado a mejorar y enriquecer los contenidos curriculares, explorar el uso de las TIC para la enseñanza de contenidos, que van más allá del currículum, con base en el acceso a ideas poderosas de las ciencias.

Con las herramientas de EFIT, los alumnos tienen acceso a la visualización y al análisis de fenómenos que es imposible replicar en el salón de clases, a continuación se describen brevemente el contenido curricular y las habilidades que se desarrollan con cada una de estas.

Interactive Physics.

Mediante el simulador IP, los estudiantes pueden experimentar con modelos del comportamiento del movimiento de los planetas del sistema solar y de esta manera, llegar a entender la Ley de la Gravitación Universal.

NIH Image.

Con el software NIH Image, los estudiantes trabajan en temas de medición y estimación, realizando mediciones del diámetro de un cráter de la Luna y analizando las dimensiones de una neurona. En este sentido, la incorporación de la tecnología en el salón de clases amplía el horizonte de experimentación de los estudiantes.

Microsoft Office: PowerPoint, Excel y Word.

Para que tanto maestros como estudiantes puedan hacer presentaciones de su trabajo en el salón, se utilizará el software PowerPoint que posibilita el manejo de
imágenes, diseño y texto que se podrán visualizar en la televisión del salón. De igual forma, para la adquisición y manejo de datos recabados en los experimentos se cuenta con la hoja de cálculo de Excel, con el cual, además de las ventajas que ofrece en la enseñanza de las matemáticas, permite analizar, graficar y obtener resultados de los experimentos que se realicen en la clase. Finalmente, Word es uno de los procesadores de palabras más conocidos que permite la comunicación escrita para cualquier uso.

3.3.3.1 Infraestructura.

Un aula EFIT, en condiciones óptimas, incluye 11 computadoras, conectadas en red local, con acceso a internet y con licencias de grupo de las piezas de software: de simulación, Interactive Physics (IP); de medición, NIH Image y Office; dos juegos de sensores, una impresora, una televisión y una videograbadora. Tal y como puede observarse en el dibujo 2.

DIBUJO 2. AULA EFIT
3.3.4 ECAMM: Enseñanza de las ciencias con modelos matemáticos.

El modelo ECAMM forma parte del programa de expansión de los proyectos EFIT y EMAT, en relación a la cobertura de temas curriculares. ECAMM se sustenta en los mismos principios de EMAT y EFIT, pero se caracteriza por enfocarse a la enseñanza de asignaturas de ciencia (Física, Química y Biología) a través del estudio de fenómenos del mundo físico, por medio de la manipulación de modelos matemáticos. En las actividades de ECAMM se utiliza una combinación de hoja electrónica de cálculo, calculadora gráfica y trabajo en papel y lápiz.

Por otro lado, las hojas de trabajo, que se incluyen en cada uno de los libros, se intenta vincular la enseñanza de las ciencias con las matemáticas, a partir de aprovechar las descripciones que los estudiantes pueden hacer de una serie de fenómenos a través de modelos matemáticos. De este modo, se intenta promover una enseñanza y aprendizaje multidisciplinario de los fenómenos científicos.

Con actividades, en forma de hojas de trabajo, se busca introducir métodos y técnicas matemáticas más apropiados para estudiantes de secundaria, las cuales proporcionan un mejor entendimiento de los conceptos científicos a través de su cuantificación; dando mayor importancia al trabajo con modelos matemáticos como son las gráficas, la representación numérica y el uso de diagramas. Así, además de la representación simbólica por medio de fórmulas y ecuaciones, se promueve el uso de la calculadora y la hoja electrónica de cálculo para descargar al alumno de la parte operativa y mecánica de las matemáticas y darle instrumentos más apropiados para la modelación matemática de fenómenos. Así como en EMAT, se proponen modelos pedagógicos diferentes basados en hojas de trabajo y en una organización diferente del salón de clase que promueve la interacción, no sólo con las herramientas tecnológicas, sino también entre alumnos y del alumno con el maestro.

Al igual que los otros proyectos, el uso de este persigue objetivos tales como la incorporación de forma sistémica y gradual el uso de las TIC a la escuela.
secundaria pública para la enseñanza de las matemáticas y las ciencias, poner en práctica el uso significativo de las TIC con base en un modelo pedagógico orientado a mejorar y enriquecer los contenidos curriculares, de manera transversal, a lo largo de todas las materias de ciencia, explorar el uso de las TIC para la enseñanza de contenidos, más allá del currículum, con base en el acceso a ideas poderosas en matemáticas y ciencias, complementar la enseñanza de las ciencias, a través de actividades de modelación matemática y promover en los alumnos la comprensión de los conceptos científicos a partir de actividades de predicción y verificación de conjeturas sobre el comportamiento de fenómenos del mundo físico.

3.3.4.1 Infraestructura.

En forma análoga al modelo EMAT, un aula ECAMM, en condiciones óptimas, incluye 16 computadoras, conectadas en red local y con acceso a Internet; así como licencias grupales de Excel (normalmente incluido en Office), un proyector de acetatos o de cristal líquido y una impresora. Obsérvese el dibujo 3.

DIBUJO 3. AULA ECAMM
3.4 Entrevistas realizadas a los coordinadores de proyectos educativos en México.

Aquí se presentan las entrevistas realizadas a los coordinadores de los proyectos de investigación que se desarrollan o se están desarrollando en México.

Esta información fue extraída de la dirección Web: http://www.ciberhabitat.gob.mx/academia/proyectos/index.html

3.4.1 Caliman: la calculadora de imágenes.

Entrevista al Doctor José Marroquín Zaleta. Coordinador de proyecto

…Una imagen digital es un mosaico de puntos, llamados pixeles, cada uno de los cuales tiene un color gris en tono diferente, que se codifica con un número. Por consiguiente, una imagen digital es un arreglo de números, a los que pueden aplicarse diferentes operaciones: sumas, restas, multiplicaciones, entre otras. El procesamiento -o más generalmente, el análisis de imágenes- consiste en aplicarles diferentes operadores matemáticos para extraer ciertas propiedades físicas de los objetos que representan; así, por ejemplo, de imágenes médicas como radiografías, o de resonancia magnética, se obtiene la clase de tejido que representa cada punto; de fotografías tomadas desde un satélite es posible determinar el tipo de cultivo que crece en cada localidad; a partir de pares de imágenes tomadas desde diferentes puntos (pares estereoscópicos) se puede determinar la distancia de cada punto a las cámaras.

La calculadora de imágenes que hemos desarrollado es una herramienta didáctica que facilita la enseñanza de las técnicas de procesamiento de imágenes en cursos de licenciatura y posgrado. Para construirla, tomamos el modelo muy familiar de calculadora científica y lo generalizamos, de modo que en lugar de números, opere con arreglos de números, es decir, con imágenes.
-¿Qué aplicaciones se le darán a la calculadora?

En realidad no se trata sólo de la calculadora, sino de un conjunto de materiales didácticos que incluyen notas, transparencias, un libro de ejercicios y el código de las funciones de las operaciones que se realizan en ella. Todo este material facilita la enseñanza de las técnicas matemáticas (cálculo, sistemas lineales, métodos probabilísticos, entre otros) y las técnicas de programación necesarias para el análisis de imágenes. La idea es que los estudiantes usen la calculadora para hacer operaciones con imágenes y, a medida que el curso progrese, hagan sus propios programas de proceso usando la librería de funciones que el material incluye.

-¿Ya está funcionando esta herramienta y qué lenguaje de programación utiliza?

Sí, ya está funcionando, aunque seguimos añadiéndole funciones y utiliza el lenguaje C y C++

-¿Cómo funciona?

Funciona igual que una calculadora científica programable, excepto por sus "registros de memoria" que almacenan imágenes. Tiene además la ventaja de recordar una serie de operaciones a medida que las ejecuta, es decir, genera automáticamente el programa que las hace, de modo que es posible repetirlas con otras imágenes o efectuar cambios en ellas de una manera muy fácil y rápida.

Para obtener una idea de lo que significa procesar una imagen en la calculadora, puedo sugerir los siguientes ejercicios: Leer 2 imágenes, y en la subcalculadora de operaciones aritméticas, sumarlas y restarlas y observar el resultado; en la subcalculadora de derivadas, oprimir el botón de "Magnitud de Gradiente" y conseguir los bordes de la imagen; en la subcalculadora de "Convolución" oprimir el botón que dice "Gaussiana", con un valor de sigma de 5, y alcanzar la distribución gruesa de luces y sombras, entre otros. Desde luego que para comprender realmente estas operaciones y utilizarlas para resolver problemas
prácticos, es necesario profundizar en el tema, pero como digo, esto proporciona una idea.

-¿Quiénes pueden usarla además de los académicos?

Cualquier persona, basta con bajarla de nuestro sitio en Internet. Hemos encontrado que la calculadora, además de servir para la enseñanza, es útil como herramienta para la investigación y el desarrollo de nuevos métodos de procesamiento de imágenes, ya que permite rápida y eficientemente probar procesos complejos.

-¿Podría la calculadora comercializarse y ser utilizada por gente que se dedica a la fotografía, al diseño gráfico o industrial o a otras actividades relacionadas con la digitalización?

Tal vez, aunque no fue diseñada con este propósito. Habría que añadirle funciones más relevantes para ello.

-Una vez que el proyecto termine ¿Compartirán la calculadora de imágenes con otros institutos que enseñen Ciencias de la Computación?

Por supuesto, la idea es compartir no sólo la calculadora, sino todo el material referente.

-¿A quién se le ocurrió diseñar una calculadora que procesara imágenes y cuántas personas participan en el proyecto?

Al grupo de investigación en análisis de imágenes del CIMAT y por el momento participan dos personas.

-¿Cuánto tiempo tiene este proyecto?

Llevamos 2 años trabajando en la calculadora y el material referente. Pensamos incorporarle funciones y desarrollar más materiales e incluso he pensado escribir un libro de texto sobre la calculadora.
-¿Cuáles han sido los principales problemas que han tenido a lo largo de este proyecto?

Creo que la valoración adecuada por parte de las autoridades encargadas de evaluar la producción de los científicos. Espero que esta situación se corrija, pues considero de gran importancia para nuestro país el que se desarrolle material didáctico de alta calidad, para aprovechar la tecnología moderna, y que ésta sirva de apoyo para la enseñanza de diversas asignaturas a todos los niveles, desde la primaria hasta el posgrado.

-A propósito doctor ¿cómo ve la investigación en informática en México respecto a la de otros países?

Comparada con la de los países desarrollados está increíblemente retrasada. Una sola compañía privada, por ejemplo en Estados Unidos de América, puede tener varias veces el número total de investigadores que existen en México. Dada la importancia que estas tecnologías tienen para el desarrollo de un país, me parece urgente que en el nuestro se fomente esta investigación.

3.4.2 Enciclomedia.

Entrevista al Doctor Felipe Bracho Carpizo, Coordinador de Proyecto.

Enciclomedia es una herramienta tecnológica creada para estimular el aprendizaje del estudiante respecto a la currícula contenida en los libros de texto gratuito de la SEP, que ofrece diferentes recursos generados por las tecnologías de información y comunicación, para que el alumno profundice y amplíe su horizonte en relación con cada uno de los temas.

Desarrollada por investigadores mexicanos en informática, Enciclomedia constituye una propuesta original, cuyos primeros beneficiarios serán los alumnos de educación básica de México.
-Doctor Bracho, ¿nos podría explicar en qué consiste el proyecto Enciclomedia?

Es un proyecto pedagógico que vincula los libros de texto gratuitos con recursos que enriquecen y apoyan los temas de la curricula de primaria. Se trata de optimizar materiales educativos de diversas índoles tales como: la enciclopedia Encarta, ligas a sitios en internet, artículos especializados, video, audio y actividades pedagógicas, en una base de datos, para que estudiantes y profesores cuenten con una amplia gama de posibilidades de investigación y documentación, orientada a un aprendizaje más significativo e integral.

En ocasiones, los libros de texto son la única fuente de aprendizaje y consulta que los alumnos poseen, por ello se pretende que Enciclomedia sea un conjunto de opciones para entrar en el mundo virtual de la información, rico en fuentes complementarias, recursos diferentes, e incluso medio de comunicación con otros alumnos que están trabajando los mismos temas en otros lugares de México y el mundo. Se trata, por ello, de un medio tecnológico de información y comunicación.

No sobra decir que, los contenidos de Enciclomedia serán avalados por especialistas de la Secretaría de Educación Pública, que aplicará, aprovechará y distribuirá este modelo educativo a nivel nacional, que además estará disponible en un sitio de Internet.

-¿Cuál es el objetivo que se planteó al inicio del proyecto?

El objetivo, como ya se mencionó, es contar con un universo documental y audiovisual que condense toda la información posible sobre cada tema de la curricula, como una enciclopedia cuyas entradas abarquen diversos contextos que enriquecen, sin duda, la formación de la comunidad educativa.

En un primer momento se trabajará sobre los libros de educación primaria, sin embargo, es evidente que un medio como éste tiene mayor potencial en cuanto a la integración de recursos y los grupos de receptores, por lo que en el futuro, podrá ser aplicado a otros niveles de aprendizaje.
-¿Nos podría hablar un poco de la forma o etapas en que se ha desarrollado este proyecto?

En una primera instancia, nos abocamos a la concepción tanto teórico-pedagógico, como de instrumentación técnica. Una vez estructurados los primeros contenidos, se presentó la propuesta a diversas instituciones públicas y privadas entre las que estaba Microsoft, con quien finalmente se inició el desarrollo del proyecto, vinculando los temas con los contenidos de la enciclopedia Encarta.

Como un primer resultado, se cuenta ya con el prototipo para el libro de Historia de 5º grado, y se tiene programado seguir con el de Ciencias Naturales para el mismo grado, y de ahí abarcar cada uno de los libros de texto de los distintos niveles y materias de educación básica, para lo cual se requiere del compromiso de las autoridades educativas, una vez que se haya probado la eficacia de esta herramienta.

-¿Qué beneficios podrán encontrar los profesores y alumnos con el uso de Enciclomedia?

Contar con una herramienta, que además de los contenidos del libro, presente una combinación y utilización de mediaciones tecnológicas en forma reflexiva, contextualizada y estratégica, que fortifiquen los encausados participativos, interactivos y de confrontación, con la finalidad de brindar a los alumnos la posibilidad de acceder una educación crítica y constructiva, en la que cada uno es gestor de su propio cambio y avance pedagógico.

Por ejemplo, supongamos que estás estudiando la lección cuatro del libro de Historia de 5º año, cuyo tema está dedicado a la civilización griega, con la ayuda de Enciclomedia, no sólo contarás con los contenidos del texto impreso, sino que puedes pasar a ver un video, fotografías, documentales, un artículo o reflexión sobre el tema y su contexto, de manera que tu libro se transforma en un ejemplar multimedia y en un medio de comunicación entre alumnos y profesores que están viendo este tema. ¿Imagínate que un estudiante pueda acceder a todos estos
reursos, cuando quiera, cuando lo necesite; en un sólo lugar y de una manera fácil y rápida!

Con Enciclomedia se establece un camino natural entre la forma tradicional de presentar y organizar los contenidos curriculares, y una gama de posibilidades que brindan las tecnologías de información y comunicación. Esto permitirá que en las escuelas públicas, donde se cuente con el equipo de cómputo necesario, se tenga acceso fácilmente a dichos contenidos.

De esta manera, las niñas y los niños de México, podrán tener la experiencia de conocer virtualmente los diferentes lugares de interés que presentan los libros de texto, al tiempo que, podrán tener una vivencia mucho más rica y un aprendizaje mucho más significativo, en lo que concierne a la historia, la geografía, la cultura y en general las ciencias.

-Además de la enciclopedia Encarta, ¿con qué otras fuentes de información están pensando ligar los libros de texto?

En Historia, por ejemplo, se tiene pensado utilizar material desarrollado sobre México, en colaboración con el Instituto Nacional de Antropología e Historia, de modo que, los usuarios podrán realizar visitas virtuales a Teotihuacán o al Museo de Antropología, a partir del libro de texto, así como encontrar información documental sobre las piezas, como por ejemplo: por qué es importante, cuándo se descubrió, a qué periodo pertenece, etcétera.

-¿Cómo se podrá aprovechar este material por todos los niños mexicanos considerando que en nuestro contexto de educación pública son escasos los recursos informáticos?

Bueno, eso es algo que evidentemente rebasa al proyecto Enciclomedia, sin embargo existen una serie de instancias vinculadas al Programa de Educación a Distancia de la SEP, que se encargan de equipar aulas de medios en todo el país. De modo que, este proyecto quedará inserto como herramienta académica dentro
de este Programa. No obstante, no tengo ninguna duda de que tarde o temprano todos los niños van a tener acceso a Internet.

Aquí hay un punto muy importante a considerar en lo relativo a costo y beneficio, ya que, entre mayor sea el beneficio que puedan obtener los niños al acceder a Internet, más se justificará el costo. Desde mi punto de vista, en lo que más tenemos que invertir ahora es en el desarrollo de contenidos y materiales que propicien que el costo se justifique.

En conclusión, desarrollar Enciclomedia representa un bajo costo, comparado con equipar con computadoras a todas las instituciones educativas del país, entonces el reto es que, en la medida en que tengamos los recursos para ir dotando de computadoras e Internet a las escuelas, contemos también con una serie de materiales y recursos pedagógicos ya desarrollados, para que realmente se le saque provecho a las computadoras, porque lo importante no es la tecnología, sino desarrollo del proceso enseñanza-aprendizaje de los seres humanos.

-¿Podríamos concebir esta idea para otros niveles de educación?

Sí, el sistema puede realmente adaptarse a cualquier libro, ampliando sus contenidos con recursos existentes en torno de distintos temas. Como ya mencioné en el ejemplo del museo, el conocimiento va desde las ideas más sencillas hasta las más complejas; supongamos que ya tenemos los libros de texto de primaria en línea, entonces los alumnos de secundaria pueden usar los libros de primaria ya enriquecidos, para repasar o aprender más; para ellos no serán los mismos libros que tenían cuando iban en primaria, sino que contarán con información enciclopédica, y esto será, en mi opinión, una referencia casi obligada, en virtud de que ya tuvieron contacto con un medio más rico, y sabrán cómo encontrar nuevos materiales y aprovecharlo en su proceso formativo.

Lo ideal sería seguir con los libros de secundaria y luego con los de educación media, debido a que Enciclomedia es un proyecto que puede abarcar más niveles, en el cual seguramente muchos autores aportarán cada vez más información.
-¿Doctor, entonces cuándo podremos tener lista Enciclomedia?

Se planea que antes de que termine el presente ciclo escolar, y considerando el hecho de que ya contamos con un prototipo, podremos presentar resultados cuando menos en lo relativo a los libros de texto de Historia y Ciencias Naturales de 5° grado de primaria.

-¿Quién está participando en el proyecto?

Actualmente lo estamos desarrollando de manera conjunta entre el Instituto Latinoamericano de la Comunicación Educativa, Microsoft y la Secretaría de Educación Pública. En su inició participó el Instituto Tecnológico Autónomo de México (ITAM), la Universidad Pedagógica Nacional y el Instituto Politécnico Nacional.

-Doctor Bracho, ¿qué significa para usted ser el creador de Enciclomedia?

Sólo puedo afirmar que no es un proyecto personal, sino que involucra el trabajo de múltiples instancias académicas y humanas, y que su objetivo es generoso desde su conformación, ya que, está destinado a elevar el nivel educativo de los alumnos y profesores de las escuelas públicas del país. Confío en que la educación es la herramienta medular para forjar mejores seres humanos, críticos, sanos, con atributos cívicos y éticos.

3.4.3 Sofia.

Entrevista al Doctor Juan Luis Díaz de León. Coordinador del proyecto.

Pretendemos que SOFIA se convierta en una herramienta tecnológica que le permita a las instituciones –si se puede de todo el país- normalizar, controlar la calidad y estandarizar la educación en las aulas.”

Juan Luís Díaz de León (JLDL): EVA es un proyecto muy interesante que se propuso durante la anterior administración del CIC y llamó la atención; sin
embargo, era un proyecto de investigación y como tal, con un límite en su aplicación. La estaban llevando a cabo investigadores con una filosofía de trabajo específicamente académica, que servía para publicar artículos, informes, reportes académicos, etcétera.

EVA en su concepción original no podía ser llevado al público, es decir, los resultados no eran susceptibles de ser utilizados por ningún cliente. Es el salto que le faltó a EVA; se manejó como un producto terminado y se comenzó a entregar el prototipo y como tal tenía errores e inconsistencias, porque era un trabajo de investigación. No se desenvolvió como un desarrollo sistemático específico.

Cuando tomo el Centro, y me toca revisar ese proyecto, me doy cuenta de sus limitaciones académicas; el proyecto estaba acotado en lo académico y no podía salir más allá. Se tomó inmediatamente una decisión para que el equipo del proyecto EVA se conformara de manera diferente y se dedicara a desarrollar un producto, ya que la parte de investigación estaba suficientemente madura.

Tomamos la decisión de conservar lo mejor de EVA, y/o de otras filosofías nuevas de trabajo para crear nuevos productos. El proyecto al que voy a referir es la segunda etapa de EVA y para diferenciarlo de éste, lo llamamos SOFIA. La idea era conservar un nombre de mujer.

EVA estaba basado en aspectos pedagógicos existentes en su momento y eso lo limitó. En SOFIA se cambió esa filosofía de trabajo y se planeo un producto independiente de pedagogías, de manera que cualquier institución, cualquier corriente pueda utilizarla sin ambages.

La otra gran diferencia es que SOFIA consiste en un esquema de administración del conocimiento, que lo administra per sé y además administra a la gente que trabaja con el conocimiento.
La tercera diferencia es la concepción de los materiales de estudio. Mientras que para EVA se propuso un polilibro (cuyo concepto se desvirtuó) que fue sustituido por material electrónico convencional, confundiendo al usuario; ahora con SOFIA, hay un concepto de material educativo muy específico. El átomo del conocimiento, a partir del cual se pueden construir y manejar ciertos conceptos de reusabilidad y variabilidad.

La razón del nombre "átomos del conocimiento", se da en una reunión del CUDI (Coordinación Universitaria para el Desarrollo de Internet), en esa reunión, además de hablar de EVA y de los materiales de aprendizaje, ya teníamos en mente la idea de cambiar el esquema de trabajo y no tomar los objetos de aprendizaje que trabajan en el CUDI o en Canadá, ni tampoco el concepto de polilibro que se creó aquí. De esta forma, se decidió que había que empezar un nuevo proyecto

SOFIA, más que sustituir a EVA, es la etapa natural de trabajo después de haberlo culminado. Son cosas distintas, están orientadas para distintos públicos: EVA era para el académico, SOFIA es para el público en general.

JLDL: SOFIA no está basado en ningún esquema y esa es la gran ventaja. Sin embargo quien requiera trabajar en un sistema basado en competencias, como es el caso de EVA, lo podrá hacer. SOFIA es compatible con cualquier metodología de aprendizaje o enseñanza.

Bajo cierta conceptualización teórica de trabajo, va a permitir modelar cualquier esquema académico; lo único que SOFIA exige es que seamos capaces de distribuir nuestro espacio de aprendizaje a través de átomos de conocimiento, que por una analogía con la química -recordemos la tabla periódica que tiene más de 100 elementos, y con ellos cientos de miles de compuestos y los millones de productos que fabricamos- la idea es poder conceptualizar un espacio de conocimiento a través de sus átomos. Las partículas más pequeñas me van a servir para construir los programas de estudio con el esquema académico.
Una vez que tenemos definidos los átomos necesitamos definir la conectividad entre ellos; en una molécula, interactúan átomos, entonces requiero definir mis moléculas y finalmente las reglas de interacción, las cuales me van a permitir darle al alumno las políticas para estudiar, las políticas a la institución para administrar y las políticas para el mismo sistema, por si es necesario modificar algo según las capacidades y avances del estudiante.

SOFIA es una infraestructura, tiene su propia base teórica, está basada en conocimiento y le va a permitir a un diseñador de conocimiento, diseñar sus propios espacios, la estructura desde la cual están conectados sus espacios y las reglas de navegación. Además, SOFIA como es un sistema de cómputo puede ser utilizado para aprovechar ese poder de administrar a los alumnos, control escolar, moderadores, etcétera, en todos los procesos.

- ¿Cómo se puede definir la arquitectura de SOFIA?

JLDL: Tiene espacios similares a los de EVA, lo que sucede es que la manera de trabajar con ellos es distinta; sigue existiendo un espacio de conocimiento, pero se modela distinto, y por supuesto, seguirá habiendo un espacio de colaboración.

Se trata de una conceptualización de lo que es enseñanza-aprendizaje, a través de la tecnología. No queremos que SOFIA sustituya la educación, por el contrario, queremos que sea la herramienta tecnológica que le permita a las instituciones -si se puede de todo el país- normalizar, controlar la calidad y estandarizar la educación en nuestras aulas. SOFIA puede ser utilizado por el profesor en su salón de clases, no se trata de quitar al profesor, quien puede utilizarlo conectándose a la base de datos de su universidad y obtener los materiales que va a utilizar en su clase.

Además, puede acceder a aulas especiales con moderadores, donde está vigilando el desempeño de los alumnos que están conectados en una universidad y motivar a los alumnos a tomar clase de manera semi-autodidacta, algo intermedio entre educación presencial y virtual. O si lo desean, tomar clases a
distancia; yo soy de la idea de que se puede aprender a distancia, pero no podemos certificar a distancia. Se podrán inventar 20 mil artilugios para comprobar la legalidad de un examen a distancia; sin embargo, yo considero que no hay nada como estar presente para evaluar. SOFIA puede apoyar a la educación, mejorándola en el sentido de que se actualiza, se normaliza y se tiene un control de calidad a nivel nacional. Con ella podríamos asegurarnos de que todas las instituciones de nuestro país enseñen lo mismo y con la mejor calidad posible.

-¿Cuál es el perfil de los colaboradores?

JLDL: Estoy tratando de involucrar al equipo que colaboró en EVA para ver qué cosas nuevas creamos para SOFIA. Ya se cuenta con los programadores, así como con una estructura: una Unidad de Desarrollo de Aplicaciones, otra unidad de Integración y todos los procesos del desarrollo se hacen conforme se desarrolla el software en una empresa. El perfil es: maestros en ciencias, ingenieros con especialidad en programación y desarrollo de sistemas. En SOFIA ya no hay un perfil de investigadores. A ellos los involucro en el momento en que necesitamos adaptar algo nuevo, evolucionar. El equipo de trabajo desarrolla y produce.

Deseamos ofrecer un producto que se le pueda instalar a un usuario para que éste pueda administrarlo sólo. Estamos en el proceso de hacerlo amigable, el costo además es accesible.

-¿Tienen un tutor siempre?

JLDL: SOFIA permite asesores, tutores, moderadores y la colaboración entre los alumnos, aunque no los conocen entre sí. Tiene opción de chatear con los que comparten con él ese espacio de conocimiento. Se propician las preguntas y las discusiones. Cualquier persona que esté en SOFIA, incluso a nivel internacional, puede comunicarse e intercambiar experiencias.

-¿Cómo identifico ese espacio?
JLDL: Hay un espacio en donde se administra a los navegantes. Es una base de datos en donde se registran quienes tienen derecho de accesar y con capacidades de almacenar la información. De esta forma se da seguimiento, estamos hablando de tener un control escolar sin papel, de que un profesor pueda calificar sus exámenes desde su casa, desde algún congreso en el cual esté mostrando sus trabajos de investigación, puede realizar muchos procesos administrativos desde cualquier lugar, al igual que el alumno.

-¿Qué ámbitos de estudio incluye? licenciatura, posgrado, diplomados...

JLDL: Como no está casado con ningún esquema educativo, cualquier nivel académico, cualquier programa de estudios se puede modelar en SOFIA.

-¿Cuál es el avance que han tenido?

JLDL: Tenemos una versión beta, que está a un noventa por ciento de desarrollo, y por lo tanto está en condiciones para repartirse entre las instituciones que quieran probarlo. Con estas pruebas de demanda de carga podríamos detectar algún error y corregirlo de inmediato.

Actualmente, sólo funciona en el CIC y en instituciones que están haciendo convenios de colaboración con nosotros, por ejemplo: la Secretaria de Marina, en Laguna Verde, el CENAPRED para dar capacitación o con el TEC de Monterrey, Chapingo e instituciones en el extranjero como la Comunidad Económica Europea a través del proyecto ALICE que significa Alianza para la Comunicación en Internet, @LICE.

Estamos en las pruebas con usuarios reales y aquella institución que se interese en participar con nosotros, bienvenida. Para que esto funcione, deben existir materiales construidos, adecuados a la filosofía del producto y empezar a utilizarse; ver sus limitaciones y sus bondades.

-Sin embargo, no ha tenido un amplio radio de difusión ¿cómo pueden las instituciones conocer a SOFIA?
JLDL: A través de la Academia. Deseamos que las empresas utilicen la versión beta, la usen y entre todos podamos mejorarla.

Ya cuando termina el proceso de pruebas, sale la versión comercial y la intención es que ésta sea gratis para el Estado y luego se vuelva un estándar nacional. Después, si otras instituciones privadas quieren usarla entonces sí se vende.

-¿Ha habido alguna experiencia anterior o algún modelo similar que exista en el plano internacional?

JLDL: En realidad no, lo que pedí que se hiciera fue que se trabajara en un modelo que se hubiese conceptualizado cien por ciento aquí, por dos razones: primero, para cumplir con la idiosincrasia de nuestro país y segundo, para no arrastrar las limitaciones de otros modelos. Una vez que tengamos el modelo propio, se compara con los estándares y se realizan las modificaciones necesarias, cuando se tuvo el modelo para SOFIA, se vio que tenía muchas similitudes con los estándares internacionales, lo cual nos dio gusto porque eso quiere decir que hicimos las cosas bien.

-¿Sigue el CONACYT sustentando este proyecto?

JLDL: Sí, de hecho el proyecto que tengo con el CONACYT, a mi cargo como Coordinador, no es específicamente para SOFIA, sino una serie de subproyectos dedicados a nuevos lenguajes y a cómputo no numérico, aunque el 99 por ciento de ese presupuesto está asignado a SOFIA.

-¿Qué otros proyectos hay?

JLDL: En el CIC estamos intentando ser autosuficientes, tenemos muchos proyectos que están vinculados con el sector productivo y con el sector gobierno, que nos generan ingresos y gracias a eso podemos trabajar y dar continuidad a los mismos. Aunque nos afectan, los problemas económicos del Politécnico no nos paralizan.
El año pasado logramos ingresar un poco menos del doble de lo que se nos dio de presupuesto para operar el Centro, y este año tenemos la intención de por lo menos ingresar el triple. Un centro de esta naturaleza requiere de mucho dinero, estamos hablando de que tenemos los mejores laboratorios e investigadores del país y mucha operativa detrás para sustentar el trabajo.

Si podemos ser productivos, produzcamos y con ese mismo dinero nos mantenemos.

-¿Cuáles serían las metas de SOFIA a corto, mediano y largo plazo?

JL DL: A corto plazo, sería bueno que muchas instituciones se interesaran, porque necesito retroalimentación. Para depurarlo y hacerlo lo más eficiente, lo más genérico posible. A mediano plazo, quisiera que fuera un estándar nacional, que la Secretaría de Educación Pública, así como las universidades estatales pidieran en algún momento dado, tomar esto como un estándar educativo, ya sea a nivel presencial, semipresencial o virtual.

A largo plazo, que se mantenga el mayor tiempo posible, mientras tanto, durante todas esas etapas, por supuesto que no nos vamos quedar con la versión 1 de SOFIA, vamos a seguir trabajando.

-¿Hay pedagogos en el equipo?

JL DL: Estamos apoyándonos con pedagogos, de manera eventual, algunos de nuestros investigadores también tiene conocimiento en la materia.

Por ejemplo, una institución que se interese en SOFIA, a pesar de que hacen sus propios trabajos en educación virtual pueden generar un centro de cómputo mediante los servidores de SOFIA y las bases de datos de sus programas de estudio. Los que se quieran adentrar; necesitan un administrador del conocimiento, que es el que va a adecuar el programa de la UNAM a SOFIA para que lo administre y le va a indicar a SOFIA las reglas de sus programas de estudio.
y las reglas de cómo evaluar y dar seguimiento a los estudiantes, según los programas establecidos por la propia institución.

Después de definir el espacio del conocimiento la universidad designa a usuarios especiales como instructores, asesores y moderadores, quienes van a hacer su trabajo como si fueran profesores prefectos o moderadores en un foro de discusión.

Su control escolar puede inscribir a los alumnos desde su casa o directamente en la escuela.

Respecto a la red, el usuario lo único que necesita es tener acceso a una computadora con un navegador de Internet, Netscape o Explorer; a diferencia de los sistemas comerciales que exigen licencias por usuario, programas, algún plug-in, etc.

Toda la inteligencia del programa está en los servidores de la universidad, del tecnológico, etc. según la institución que lo utilice.

- ¿Tiene implicadas medidas de seguridad?

JLDD: Son las medidas comerciales, lo básico; sin embargo, se pueden incluir en cualquier momento anillos de seguridad especial, inclusive propietarios, que aquí fabricamos.

- ¿Se puede hacer un plan a la medida?

JLDD: Por supuesto, se lo desarrollamos. Afortunadamente aquí tenemos el know how y la mano de obra calificada para producir lo que se necesite.

JLDD: A nivel estatal, podemos decir que si se usa en México, es gratis. Costo-beneficio implica que vamos a mejorar nuestra educación, vamos a estar a la vanguardia porque hasta la fecha ningún país ha logrado instaurar un esquema estandarizado a nivel nacional, México sería el primero. El objetivo, mejorar la
calidad de nuestra educación, asegurarnos que tenga el mismo nivel en todos los rincones del país y que pueda seguir los estándares internacionales.

Muchas universidades y escuelas del Estado ahorrarían muchos costos. Por ejemplo, en lugar de que el Politécnico intente construir diez universidades al interior de la República, mejor construya diez aulas de actualización y de seguimiento a distancia, es mucho más barato y de esta forma, reducir un poco esa brecha tecnológica, ese temor al uso de las nuevas tecnologías.

En el grupo de trabajo de SOFIA estamos también trabajando otros proyectos de índole institucional: sistemas de gestión completa para la administración de una escuela, que involucre aspectos como gestión de documentos de personal, recursos humanos y financieros, materiales, sistemas integrales de gestión administrativa, adecuados al sistema educativo mexicano. Son una serie de proyectos muy cercanos a SOFIA porque eventualmente vamos a integrarlos todos; SOFIA se dedica a gestionar la educación, pero alrededor de ésta hay muchas otras actividades. Estas instituciones educativas, podrán administrar sin papel todas sus actividades.

¿Cuál sería la certificación que se extiende?

JLDL: Dependiendo de la universidad. Nosotros podemos certificar a la gente que desee utilizar el sistema, y certificarlos para que puedan utilizarlo.

-Interactividad

JLDL: El muchacho va a su ritmo, dependiendo de sus capacidades y según las políticas de la institución: cuando pueda, como pueda, siempre y cuando aprenda.”
3.5 Portales educativos en Internet.

Aunque sean pocos los proyectos que incluyan NTIC en la educación impulsados por el gobierno, gracias a la WWW podemos tener acceso a otros recursos que también son de apoyo para el ámbito educativo.

A continuación se presentan algunas direcciones de páginas Web en donde se encontrará información de interés tanto para el estudiante como para el profesor.

http://www.sep.gob.mx

http://www.tareasya.com

Portal Mexicano donde encontrará diferentes materiales e información para las tareas escolares de acuerdo al plan de estudio vigente en México de forma ordenada y clasificada (Por nivel educativo y materia).

http://elbalero.gob.mx

Portal Mexicano de la Presidencia de la República para los Niños de México, donde encontrarás temas de relacionado con la historia de México, temas de ecología, arte, gobierno y cultura en general.
http://www.conevyt.org.mx/

Portal Educativo Mexicano dirigido especialmente a la Población Adulta, que no ha terminado sus estudios de educación básica. Promueve el uso de los medios electrónicos con la opción de Educación a Distancia y Formación para el Trabajo.

http://www.kokone.com.mx

Portal Mexicano para los Niños, que contiene diversos enlaces para conocer acerca de México, los planetas, programas de lectura, apoyo a tareas escolares y juegos con finalidades didácticas.

http://www.encyclomedia.edu.mx/index.html

Portal Mexicano que contiene información tanto para maestros, alumnos y el público en general acerca del programa Enciclomedia.

http://diccionario.orbis.org.mx/publicaciones

Portal interactivo dedicado a temas de enseñanza básicos en la educación infantil (preescolar)

http://www.te.ipn.mx/laboratorio/comercial/

Enlista una cantidad de software comercial elaborado por el laboratorio del Instituto Politécnico Nacional
CONCLUSIONES

Como sabemos, la sociedad en la que vivimos actualmente es denominada de la información o del conocimiento, y es que debido al gran auge e impulso que las tecnologías tienen, en particular las de información y comunicación, nuestra sociedad se caracteriza por que cada vez, somos más propensos a percibir una diversa cantidad de datos e información, para lo cual debemos estar preparados para recibirla, procesarla y tomar decisiones de acuerdo a beneficios ya no individuales; sino que involucren a la sociedad.

Vivir en la sociedad de la información también implica la omnipresencia de nuevos instrumentos y herramientas de información y comunicación, los cuales deben su apariencia y funcionalidad actual a la evolución que la propia tecnología ha tenido con el paso del tiempo; teniendo como resultado el surgimiento de las Nuevas Tecnologías de Información y Comunicación. Bajo ese contexto, ahora nos enfrentamos a una ilimitada barrera geográfica de comunicación, con las NT las distancias físicas prácticamente desaparecen y agregan a nuestra vida cotidiana un sinfín de comodidades como velocidad, uso ilimitado de la información, ahorro de esfuerzo, más conocimiento, entre otras. Sin embargo, no todo es ventaja ante la convergencia tecnológica, pues hay que considerar que no toda la sociedad tiene acceso a estas ni pueden disfrutar de sus beneficios. Y es que quizá, se nos olvida que, esta nueva era también trae desigualdad en la sociedad, acrecentando las estadísticas de la brecha digital; pues tan solo el Internet, a pesar de que ya es una herramienta cotidiana y son los países más industrializados los que tienen la posibilidad de extender el acceso a éste cada vez más para sus ciudadanos, su uso sigue siendo ajeno a casi la totalidad de la gente en los países más pobres o incluso en zonas o entre segmentos de la población marginados aún en los países más desarrollados.
Es evidente el impacto que las NTIC provocan en todas las actividades humanas, sin embargo; la aceleración con que las NT aparecen en nuestra sociedad, plantea nuevos y más complejos desafíos en esta.

Precisamente, una de las actividades que tiene como reto introducir a las NT, es la educación. Desde el punto de vista tecnológico, en la educación, la tecnología siempre ha estado presente, pues la encontramos desde el gis, el pizarrón, la radio, la tv, hasta la computadora y el internet y demás tecnologías que se ocupan como recurso de apoyo para el proceso de enseñanza-aprendizaje. Sin embargo, la consecuencia de una acelerada introducción de las NTIC a la sociedad, hace que el ámbito educativo introduzca a ritmos acelerados estas herramientas, haciéndose evidente los desafíos que enfrenta la educación.

Como podemos apreciar en este trabajo, el “famoso” recurso tecnológico con que cuentan las escuelas de educación básica en México es obsoleto si lo comparamos con las nuevas tecnologías emergentes. Es evidente que la incorporación de las tecnologías para uso educativo ha sido paulatino, sin embargo, en la actualidad; en donde tan pronto nace una tecnología, muere, el ámbito educativo no puede verse aislado a este impacto.

Paradójicamente, a pesar de que el sistema educativo nacional tiene muchos aspectos por mejorar; como lo es mantener la infraestructura, que su cobertura sea mayor, que introduzca nuevas tecnologías en el aula, que imparta más cursos de actualización para el docente, etc., se trata que el proceso enseñanza-aprendizaje sobre todo en la educación básica, se vea beneficiado por la inclusión de las nuevas tecnologías como apoyo didáctico.

Es irónico, que aún cuando sabemos que falta educación y formación en la sociedad para que el uso de las NTIC sea aprovechada al máximo y podamos estar a la vanguardia de ellas, se hace un gran esfuerzo por incluirlas en todos los aspectos de nuestra vida.
Es loable la labor del gobierno por involucrar cada vez más al ámbito educativo en el uso de las NT, sin embargo, considero que para que las tecnologías llenen las expectativas de una educación más eficaz, primero debemos cambiar de mentalidad; pues como se observa en este trabajo, uno de los mitos más comunes, es creer que por el solo hecho de usar NT, el alumno saldrá más preparado y obtendrá un mayor rendimiento académico. Pero la realidad es que la tecnología por sí sola no es nada; la labor de un docente es cada vez más necesaria, pues es quien orientará la adquisición del conocimiento, por lo que la educación debe primero involucrar y capacitar con calidad a los docentes en temas referentes a la tecnología educativa, a la par, se debe analizar cuáles son las posibilidades de que las aulas de clase adquieran tecnologías; si están o no en condiciones para mantenerlas y sobre todo, si cuentan con el recurso tanto físico como financiero para sostenerlas.

Aunque los proyectos que el gobierno impulsa e introduce como uso educativo a nivel nacional son muy buenos, creo que primero a la educación como tal debe otorgársele el tiempo necesario para que se prepare y adecúe a las necesidades que exige la nueva sociedad, y será entonces el momento oportuno para que se logre una total aceptación de las nuevas tecnologías.
BIBLIOGRAFÍA

Aguiar Perera, María Victoria (2002). Cultura y Educación en la Sociedad de la Información. España, NETBIBLO, S.L.

Cabrero Almerana, Julio (2002). Cultura y Educación en la Sociedad de la Información. España, NETBIBLO, S.L.

Censos Generales de Población, México: Instituto Nacional de Estadística, Geografía e Informática, de 1895 a 1980.

Comisión de las Comunidades Europeas: Comunicación de la Comisión al Consejo y al Parlamento Europeo; Tecnologías de la información y de la comunicación en el ámbito del desarrollo. El papel de las TIC en la política comunitaria de desarrollo; Bruselas, (2001).

Diccionario de Informática e Internet (2000). Madrid España. Editorial ANAYA.

GAGNE, R: “Educational technology as a technique”. Educational Technology, Nov. 1968

http://es.wikipedia.org/wiki/Tecnolog%CC%81A. 26 de julio de 2007, 22:00 hrs

http://es.wikipedia.org/wiki/Tecnolog%CC%81Aas_de_la_informaci%CC%81n. 27 de julio de 2007, 16:47 hrs.

México, Centro de Estudios Educativos/UIA.

Reunión Nacional de Tecnología Educativa (1976), INCIE, Madrid.

Ibid., pp. 95-108

Sarramona López, J (1994). “Presente y Futuro de la Tecnología Educativa”, Ponencias del Seminario Internacional de tecnología Educativa, México, ILCE.

SEP (1930). Memoria que indica el estado que guarda el Ramo de Educación Pública. México: SEP.

SEP (1949). Memoria... México: SEP.

SEP (1958). Informe sintético que rinde el Secretario de Educación Pública... México: SEP.

SEP (1961). Acción educativa... México: SEP.

SEP (1972). Informe de labores... México: SEP.

SEP (1980). Informe de labores... México: SEP.

SEP (1982). Memoria... México: SEP.

